IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/102.html
   My bibliography  Save this paper

A Unifying Framework for Analysing Common Cyclical Features in Cointegrated Time Series

Author

Listed:
  • Gianluca Cubadda

    () (SEFEMEQ, Universita’ di Roma "Tor Vergata")

Abstract

This paper provides a unifying framework in which the coexistence of different form of common cyclical features can be tested and imposed to a cointegrated VAR model. This goal is reached by introducing a new notion of common cyclical features, namely the weak form of polynomial serial correlation common features, which encompasses most of the previous ones. Statistical inference is obtained by means of reduced-rank regression, and alternative forms of common cyclical features are detected by means of tests for over-identifying restrictions on the parameters of the new model. Some iterative estimation procedures are then proposed for simultaneously modelling different forms of common features. Concepts and methods are illustrated by an empirical investigation of the US business cycle indicators.

Suggested Citation

  • Gianluca Cubadda, 2007. "A Unifying Framework for Analysing Common Cyclical Features in Cointegrated Time Series," CEIS Research Paper 102, Tor Vergata University, CEIS.
  • Handle: RePEc:rtv:ceisrp:102
    as

    Download full text from publisher

    File URL: ftp://www.ceistorvergata.it/repec/rpaper/No-102.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, Oct.-Dec..
    2. Cubadda, Gianluca & Omtzigt, Pieter, 2005. "Small-sample improvements in the statistical analysis of seasonally cointegrated systems," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 333-348, April.
    3. Hecq, Alain & Palm, Franz C. & Urbain, Jean-Pierre, 2006. "Common cyclical features analysis in VAR models with cointegration," Journal of Econometrics, Elsevier, vol. 132(1), pages 117-141, May.
    4. Cubadda, Gianluca & Hecq, Alain, 2001. "On non-contemporaneous short-run co-movements," Economics Letters, Elsevier, vol. 73(3), pages 389-397, December.
    5. repec:fgv:epgrbe:v:47:n:2:a:1 is not listed on IDEAS
    6. Cubadda, Gianluca, 1999. "Common Cycles in Seasonal Non-stationary Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May-June.
    7. Paruolo, Paolo, 2006. "Common trends and cycles in I(2) VAR systems," Journal of Econometrics, Elsevier, vol. 132(1), pages 143-168, May.
    8. Lucas, Robert E., 1977. "Understanding business cycles," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 5(1), pages 7-29, January.
    9. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    10. Gianluca Cubadda, 2007. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
    11. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    12. Proietti, Tommaso, 1997. "Short-Run Dynamics in Cointegrated Systems," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(3), pages 405-422, August.
    13. Paruolo Paolo, 2006. "Finite sample comparison of alternative tests on the rank of a cointegration submatrix," Economics and Quantitative Methods qf0606, Department of Economics, University of Insubria.
    14. Mizon, Grayham E., 1995. "A simple message for autocorrelation correctors: Don't," Journal of Econometrics, Elsevier, vol. 69(1), pages 267-288, September.
    15. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 395-432.
    16. Johansen, Søren & Juselius, Katarina, 1992. "Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 211-244.
    17. Johansen, Soren, 1995. "Identifying restrictions of linear equations with applications to simultaneous equations and cointegration," Journal of Econometrics, Elsevier, vol. 69(1), pages 111-132, September.
    18. Paruolo Paolo, 2003. "Common dynamics in I(1) VAR systems," Economics and Quantitative Methods qf0316, Department of Economics, University of Insubria.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Centoni & Gianluca Cubadda, 2015. "Common Feature Analysis of Economic Time Series: An Overview and Recent Developments," CEIS Research Paper 355, Tor Vergata University, CEIS, revised 05 Oct 2015.
    2. Nannette Lindenberg & Frank Westermann, 2009. "How Strong is the Case for Dollarization in Costa Rica? A Note on the Business Cycle Comovements with the United States," Working Papers 79, Institute of Empirical Economic Research, Osnabrueck University.
    3. Cubadda Gianluca & Hecq Alain & Palm Franz C., 2007. "Studying Co-movements in Large Multivariate Models Without Multivariate Modelling," Research Memorandum 032, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Bernardini, Emmanuela & Cubadda, Gianluca, 2015. "Macroeconomic forecasting and structural analysis through regularized reduced-rank regression," International Journal of Forecasting, Elsevier, vol. 31(3), pages 682-691.
    5. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2013. "A general to specific approach for constructing composite business cycle indicators," Economic Modelling, Elsevier, vol. 33(C), pages 367-374.
    6. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    7. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
    8. Marco Centoni & Gianluca Cubadda, 2011. "Modelling comovements of economic time series: a selective survey," Statistica, Department of Statistics, University of Bologna, vol. 71(2), pages 267-294.
    9. Lindenberg, Nannette & Westermann, Frank, 2012. "Common trends and common cycles among interest rates of the G7-countries," Journal of Macroeconomics, Elsevier, vol. 34(4), pages 1125-1140.
    10. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
    11. Justyna Wróblewska, 2012. "Bayesian Analysis of Weak Form Polynomial Reduced Rank Structures in VEC Models," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 4(4), pages 253-267, December.
    12. Cubadda, Gianluca & Hecq, Alain & Telg, Sean, 2017. "Detecting Co-Movements in Noncausal Time Series," MPRA Paper 77254, University Library of Munich, Germany, revised 02 Mar 2017.
    13. Nannette Lindenberg & Frank Westermann, 2012. "How strong is the case for dollarization in Central America? An empirical analysis of business cycles, credit market imperfections and the exchange rate," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 17(2), pages 147-166, April.
    14. Espasa, Antoni & Carlomagno Real, Guillermo, 2017. "Discovering pervasive and non-pervasive common cycles," DES - Working Papers. Statistics and Econometrics. WS 25392, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Common Cyclical Features; Reduced Rank Regression.;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:102. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi). General contact details of provider: http://edirc.repec.org/data/csrotit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.