IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/611.html
   My bibliography  Save this paper

VAR Models With An Index Structure: A Survey With New Results

Author

Abstract

The main aim of this paper is to review recent advances in the multivariate autoregressive index model [MAI], originally proposed by Reinsel (1983), and their applications to economic and ?nancial time series. MAI has recently gained momentum because it can be seen as a link between two popular but distinct multivariate time series approaches: vector autoregressive modeling [VAR] and the dynamic factor model [DFM]. Indeed, on the one hand, the MAI is a VAR model with a peculiar reduced-rank structure; on the other hand, it allows for identi?cation of common components and common shocks in a similar way as the DFM. The focus is on recent developments of the MAI, which include extending the original model with individual autoregressive structures, stochastic volatility, time-varying parameters, high-dimensionality, and cointegration. In addition, new insights on previous contributions and a novel model are also provided.

Suggested Citation

  • Gianluca Cubadda, 2025. "VAR Models With An Index Structure: A Survey With New Results," CEIS Research Paper 611, Tor Vergata University, CEIS, revised 22 Sep 2025.
  • Handle: RePEc:rtv:ceisrp:611
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP611.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cubadda, Gianluca & Guardabascio, Barbara & Hecq, Alain, 2017. "A vector heterogeneous autoregressive index model for realized volatility measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 337-344.
    2. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    3. F. Vahid & R. F. Engle, 1993. "Common Trends And Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, October.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    6. Kasper Johansson & Mehmet G. Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(4), pages 324-407, November.
    7. Cubadda, Gianluca, 2007. "A unifying framework for analysing common cyclical features in cointegrated time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 896-906, October.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Bayesian VARs: Specification Choices and Forecast Accuracy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
    9. Bernardini, Emmanuela & Cubadda, Gianluca, 2015. "Macroeconomic forecasting and structural analysis through regularized reduced-rank regression," International Journal of Forecasting, Elsevier, vol. 31(3), pages 682-691.
    10. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    11. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    12. George-Marios Angeletos & Fabrice Collard & Harris Dellas, 2020. "Business-Cycle Anatomy," American Economic Review, American Economic Association, vol. 110(10), pages 3030-3070, October.
    13. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    14. Cavaliere, Giuseppe & De Angelis, Luca & Rahbek, Anders & Robert Taylor, A.M., 2018. "Determining The Cointegration Rank In Heteroskedastic Var Models Of Unknown Order," Econometric Theory, Cambridge University Press, vol. 34(2), pages 349-382, April.
    15. Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
    16. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    17. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    18. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    19. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    20. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    21. Giuseppe Cavaliere & Luca De Angelis & Anders Rahbek & A. M. Robert Taylor, 2015. "A Comparison of Sequential and Information-based Methods for Determining the Co-integration Rank in Heteroskedastic VAR Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 106-128, February.
    22. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    23. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    24. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016. "Structural analysis with Multivariate Autoregressive Index models," Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
    25. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    26. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2020. "Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors," Econometrics, MDPI, vol. 8(1), pages 1-23, February.
    27. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    28. Cubadda, Gianluca & Hecq, Alain & Palm, Franz C., 2009. "Studying co-movements in large multivariate data prior to multivariate modelling," Journal of Econometrics, Elsevier, vol. 148(1), pages 25-35, January.
    29. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011. "Forecasting large datasets with Bayesian reduced rank multivariate models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
    30. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    31. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    32. Gianluca Cubadda & Alain Hecq, 2011. "Testing for common autocorrelation in data‐rich environments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 325-335, April.
    33. H. Peter Boswijk & Jurgen A. Doornik, 2004. "Identifying, estimating and testing restricted cointegrated systems: An overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 440-465, November.
    34. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    35. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    36. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    37. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    38. Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025. "The time-varying Multivariate Autoregressive Index model," International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
    39. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    40. Di Wang & Yao Zheng & Heng Lian & Guodong Li, 2022. "High-Dimensional Vector Autoregressive Time Series Modeling via Tensor Decomposition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1338-1356, September.
    41. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    42. Clifford Lam & Qiwei Yao & Neil Bathia, 2011. "Estimation of latent factors for high-dimensional time series," Biometrika, Biometrika Trust, vol. 98(4), pages 901-918.
    43. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    44. Oberhofer, W & Kmenta, J, 1974. "A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models," Econometrica, Econometric Society, vol. 42(3), pages 579-590, May.
    45. Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
    46. Centoni, Marco & Cubadda, Gianluca, 2003. "Measuring the business cycle effects of permanent and transitory shocks in cointegrated time series," Economics Letters, Elsevier, vol. 80(1), pages 45-51, July.
    47. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    48. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    49. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    50. Engle, Robert F. & Issler, João Victor, 1993. "Common trends and common cycles in Latin America," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 47(2), April.
    51. Deistler, Manfred & Wagner, Martin, 2017. "Cointegration in singular ARMA models," Economics Letters, Elsevier, vol. 155(C), pages 39-42.
    52. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    53. Nikolaus Hautsch & Ostap Okhrin & Alexander Ristig, 2023. "Maximum-Likelihood Estimation Using the Zig-Zag Algorithm," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1346-1375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    2. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    3. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    4. Gianluca Cubadda & Alain Hecq, 2021. "Reduced Rank Regression Models in Economics and Finance," CEIS Research Paper 525, Tor Vergata University, CEIS, revised 08 Nov 2021.
    5. Cubadda, Gianluca & Grassi, Stefano & Guardabascio, Barbara, 2025. "The time-varying Multivariate Autoregressive Index model," International Journal of Forecasting, Elsevier, vol. 41(1), pages 175-190.
    6. Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
    7. Alain Hecq & Ivan Ricardo & Ines Wilms, 2024. "Reduced-Rank Matrix Autoregressive Models: A Medium $N$ Approach," Papers 2407.07973, arXiv.org.
    8. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    9. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2016. "Structural analysis with Multivariate Autoregressive Index models," Journal of Econometrics, Elsevier, vol. 192(2), pages 332-348.
    10. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    11. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    12. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    13. Bernardini, Emmanuela & Cubadda, Gianluca, 2015. "Macroeconomic forecasting and structural analysis through regularized reduced-rank regression," International Journal of Forecasting, Elsevier, vol. 31(3), pages 682-691.
    14. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    15. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    16. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    17. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    18. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    19. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Herath, H.M. Wiranthe B. & Samadi, S. Yaser, 2025. "Scaled envelope models for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 205(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.