IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/611.html
   My bibliography  Save this paper

VAR Models With An Index Structure: A Survey With New Results

Author

Abstract

The main aim of this paper is to review recent advances in the multivariate autoregressive index model [MAI], originally proposed by Reinsel (1983), and their applications to economic and ?nancial time series. MAI has recently gained momentum because it can be seen as a link between two popular but distinct multivariate time series approaches: vector autoregressive modeling [VAR] and the dynamic factor model [DFM]. Indeed, on the one hand, the MAI is a VAR model with a peculiar reduced-rank structure; on the other hand, it allows for identi?cation of common components and common shocks in a similar way as the DFM. The focus is on recent developments of the MAI, which include extending the original model with individual autoregressive structures, stochastic volatility, time-varying parameters, high-dimensionality, and cointegration. In addition, new insights on previous contributions and a novel model are also provided.

Suggested Citation

  • Gianluca Cubadda, 2025. "VAR Models With An Index Structure: A Survey With New Results," CEIS Research Paper 611, Tor Vergata University, CEIS, revised 22 Sep 2025.
  • Handle: RePEc:rtv:ceisrp:611
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP611.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.