IDEAS home Printed from https://ideas.repec.org/p/esy/uefcwp/17454.html
   My bibliography  Save this paper

Determining the Cointegration Rank in Heteroskedastic VAR Models of Unknown Order

Author

Listed:
  • Cavaliere, G
  • De Angelis, L
  • Rahbek, A
  • Taylor, AMR

Abstract

We investigate the asymptotic and finite sample properties of a number of methods for estimating the cointegration rank in integrated vector autoregressive systems of unknown autoregressive order driven by heteroskedastic shocks. We allow for both conditional and unconditional heteroskedasticity of a very general form. We establish the conditions required on the penalty functions such that standard information criterion-based methods, such as the Bayesian information criterion [BIC], when employed either sequentially or jointly, can be used to consistently estimate both the cointegration rank and the autoregressive lag order. In doing so we also correct errors which appear in the proofs provided for the consistency of information-based estimators in the homoskedastic case by Aznar and Salvador (2002). We also extend the corpus of available large sample theory for the conventional sequential approach of Johansen (1995) and the associated wild bootstrap implementation thereof of Cavaliere, Rahbek and Taylor (2014) to the case where the lag order is unknown. In particular, we show that these methods remain valid under heteroskedasticity and an unknown lag length provided the lag length is first chosen by a consistent method, again such as the BIC. The relative finite sample properties of the different methods discussed are investigated in a Monte Carlo simulation study. The two best performing methods in this study are a wild bootstrap implementation of the Johansen (1995) procedure implemented with BIC selection of the lag length and joint IC approach (cf. Phillips, 1996) which uses the BIC to jointly select the lag order and the cointegration rank.

Suggested Citation

  • Cavaliere, G & De Angelis, L & Rahbek, A & Taylor, AMR, 2016. "Determining the Cointegration Rank in Heteroskedastic VAR Models of Unknown Order," Essex Finance Centre Working Papers 17454, University of Essex, Essex Business School.
  • Handle: RePEc:esy:uefcwp:17454
    as

    Download full text from publisher

    File URL: http://repository.essex.ac.uk/17454/
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, pages 435-463.
    2. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, pages 527-560.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, pages 215-238.
    4. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    5. Perron, Pierre & Qu, Zhongjun, 2007. "A simple modification to improve the finite sample properties of Ng and Perron's unit root tests," Economics Letters, Elsevier, vol. 94(1), pages 12-19, January.
    6. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    7. Breitung, J rg & Franses, Philip Hans, 1998. "On Phillips Perron-Type Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 14(02), pages 200-221, April.
    8. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, pages 548-573.
    9. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    10. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(05), pages 1121-1143, October.
    11. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, pages 1-27.
    12. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, November.
    13. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(04), pages 645-670, August.
    14. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    15. Gregoir, St phane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, pages 469-518.
    16. Alok Bhargava, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Oxford University Press, vol. 53(3), pages 369-384.
    17. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    18. Burridge, Peter & Taylor, A. M. Robert, 2001. "On regression-based tests for seasonal unit roots in the presence of periodic heteroscedasticity," Journal of Econometrics, Elsevier, vol. 104(1), pages 91-117, August.
    19. Tomás del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    20. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    21. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    22. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    23. Rodrigues, Paulo M.M., 2001. "Near Seasonal Integration," Econometric Theory, Cambridge University Press, vol. 17(01), pages 70-86, February.
    24. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
    25. Hall, Alastair R, 1994. "Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 461-470, October.
    26. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
    27. Gregoir, Stéphane, 2010. "Fully Modified Estimation Of Seasonally Cointegrated Processes," Econometric Theory, Cambridge University Press, vol. 26(05), pages 1491-1528, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Cointegration rank; Information criteria; Wild bootstrap; Trace statistic; Lag length; Heteroskedasticity;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esy:uefcwp:17454. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sotirios Kokas). General contact details of provider: http://edirc.repec.org/data/fcessuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.