IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.13894.html
   My bibliography  Save this paper

Inference in heavy-tailed non-stationary multivariate time series

Author

Listed:
  • Matteo Barigozzi
  • Giuseppe Cavaliere
  • Lorenzo Trapani

Abstract

We study inference on the common stochastic trends in a non-stationary, $N$-variate time series $y_{t}$, in the possible presence of heavy tails. We propose a novel methodology which does not require any knowledge or estimation of the tail index, or even knowledge as to whether certain moments (such as the variance) exist or not, and develop an estimator of the number of stochastic trends $m$ based on the eigenvalues of the sample second moment matrix of $y_{t}$. We study the rates of such eigenvalues, showing that the first $m$ ones diverge, as the sample size $T$ passes to infinity, at a rate faster by $O\left(T \right)$ than the remaining $N-m$ ones, irrespective of the tail index. We thus exploit this eigen-gap by constructing, for each eigenvalue, a test statistic which diverges to positive infinity or drifts to zero according to whether the relevant eigenvalue belongs to the set of the first $m$ eigenvalues or not. We then construct a randomised statistic based on this, using it as part of a sequential testing procedure, ensuring consistency of the resulting estimator of $m$. We also discuss an estimator of the common trends based on principal components and show that, up to a an invertible linear transformation, such estimator is consistent in the sense that the estimation error is of smaller order than the trend itself. Finally, we also consider the case in which we relax the standard assumption of \textit{i.i.d.} innovations, by allowing for heterogeneity of a very general form in the scale of the innovations. A Monte Carlo study shows that the proposed estimator for $m$ performs particularly well, even in samples of small size. We complete the paper by presenting four illustrative applications covering commodity prices, interest rates data, long run PPP and cryptocurrency markets.

Suggested Citation

  • Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2021. "Inference in heavy-tailed non-stationary multivariate time series," Papers 2107.13894, arXiv.org.
  • Handle: RePEc:arx:papers:2107.13894
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.13894
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Trapani, Lorenzo, 2016. "Testing for (in)finite moments," Journal of Econometrics, Elsevier, vol. 191(1), pages 57-68.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Lorenzo Trapani, 2018. "A Randomized Sequential Procedure to Determine the Number of Factors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1341-1349, July.
    4. Barry Falk & Chun-Hsuan Wang, 2003. "Testing long-run PPP with infinite-variance returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 471-484.
    5. Cavaliere, Giuseppe & Georgiev, Iliyan & Taylor, A.M.Robert, 2018. "Unit Root Inference For Non-Stationary Linear Processes Driven By Infinite Variance Innovations," Econometric Theory, Cambridge University Press, vol. 34(2), pages 302-348, April.
    6. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2016. "Semiparametric error-correction models for cointegration with trends: Pseudo-Gaussian and optimal rank-based tests of the cointegration rank," Journal of Econometrics, Elsevier, vol. 190(1), pages 46-61.
    7. Kasa, Kenneth, 1992. "Common stochastic trends in international stock markets," Journal of Monetary Economics, Elsevier, vol. 29(1), pages 95-124, February.
    8. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    9. Cavaliere, Giuseppe & Taylor, A.M. Robert, 2009. "Heteroskedastic Time Series With A Unit Root," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1228-1276, October.
    10. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    11. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    12. Bandi, Federico M. & Corradi, Valentina, 2014. "Nonparametric Nonstationarity Tests," Econometric Theory, Cambridge University Press, vol. 30(1), pages 127-149, February.
    13. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    14. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    15. Peter Reinhard Hansen, 2005. "Granger's representation theorem: A closed-form expression for I(1) processes," Econometrics Journal, Royal Economic Society, vol. 8(1), pages 23-38, March.
    16. Qu, Zhongjun & Perron, Pierre, 2007. "A Modified Information Criterion For Cointegration Tests Based On A Var Approximation," Econometric Theory, Cambridge University Press, vol. 23(4), pages 638-685, August.
    17. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    18. Marc Hallin & Ramon van den Akker & Bas Werker, 2009. "A class of Simple Semiparametrically Efficient Rank-Based Unit Root Tests," Working Papers ECARES 2009_001, ULB -- Universite Libre de Bruxelles.
    19. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    20. Marat Ibragimov & Rustam Ibragimov, 2018. "Heavy tails and upper-tail inequality: The case of Russia," Empirical Economics, Springer, vol. 54(2), pages 823-837, March.
    21. David H. Bernstein & Bent Nielsen, 2019. "Asymptotic Theory for Cointegration Analysis When the Cointegration Rank Is Deficient," Econometrics, MDPI, vol. 7(1), pages 1-24, January.
    22. Boswijk, H. Peter & Jansson, Michael & Nielsen, Morten Ørregaard, 2015. "Improved likelihood ratio tests for cointegration rank in the VAR model," Journal of Econometrics, Elsevier, vol. 184(1), pages 97-110.
    23. Tu, Yundong & Yao, Qiwei & Zhang, Rongmao, 2020. "Error-correction factor models for high-dimensional cointegrated time series," LSE Research Online Documents on Economics 106994, London School of Economics and Political Science, LSE Library.
    24. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    25. Diebold, Francis X & Gardeazabal, Javier & Yilmaz, Kamil, 1994. "On Cointegration and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 727-735, June.
    26. Cavaliere, Giuseppe & De Angelis, Luca & Rahbek, Anders & Robert Taylor, A.M., 2018. "Determining The Cointegration Rank In Heteroskedastic Var Models Of Unknown Order," Econometric Theory, Cambridge University Press, vol. 34(2), pages 349-382, April.
    27. Fasen, Vicky, 2013. "Time Series Regression On Integrated Continuous-Time Processes With Heavy And Light Tails," Econometric Theory, Cambridge University Press, vol. 29(1), pages 28-67, February.
    28. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    29. Sook Fwe Yap & Gregory C. Reinsel, 1995. "Results On Estimation And Testing For A Unit Root In The Nonstationary Autoregressive Moving‐Average Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(3), pages 339-353, May.
    30. Aznar, Antonio & Salvador, Manuel, 2002. "Selecting The Rank Of The Cointegration Space And The Form Of The Intercept Using An Information Criterion," Econometric Theory, Cambridge University Press, vol. 18(4), pages 926-947, August.
    31. Caner, Mehmet, 1998. "Tests for cointegration with infinite variance errors," Journal of Econometrics, Elsevier, vol. 86(1), pages 155-175, June.
    32. She, Rui & Ling, Shiqing, 2020. "Inference in heavy-tailed vector error correction models," Journal of Econometrics, Elsevier, vol. 214(2), pages 433-450.
    33. Guang-hui Cai, 2006. "Chover-type laws of the iterated logarithm for weighted sums of ρ ∗ -mixing sequences," International Journal of Stochastic Analysis, Hindawi, vol. 2006, pages 1-7, April.
    34. Agnieszka Jach & Piotr Kokoszka, 2004. "Subsampling Unit Root Tests for Heavy-Tailed Observations," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 73-97, March.
    35. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2011. "A class of simple distribution-free rank-based unit root tests," Journal of Econometrics, Elsevier, vol. 163(2), pages 200-214, August.
    36. Xiaofeng Shao, 2015. "Self-Normalization for Time Series: A Review of Recent Developments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1797-1817, December.
    37. Xavier Gabaix, 1999. "Zipf's Law for Cities: An Explanation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 739-767.
    38. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2012. "Bootstrap Determination of the Co‐Integration Rank in Vector Autoregressive Models," Econometrica, Econometric Society, vol. 80(4), pages 1721-1740, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Mingoli, 2024. "Modeling Common Bubbles: A Mixed Causal Non-Causal Dynamic Factor Model," Tinbergen Institute Discussion Papers 24-072/III, Tinbergen Institute.
    2. Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi & Giuseppe Cavaliere & Lorenzo Trapani, 2020. "Determining the rank of cointegration with infinite variance," Discussion Papers 20/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    2. Chiara Casoli & Riccardo (Jack) Lucchetti, 2022. "Permanent-Transitory decomposition of cointegrated time series via dynamic factor models, with an application to commodity prices [Commodity-price comovement and global economic activity]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 494-514.
    3. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    4. Casoli, Chiara & Lucchetti, Riccardo (Jack), 2021. "Permanent-Transitory decomposition of cointegrated time series via Dynamic Factor Models, with an application to commodity prices," FEEM Working Papers 312367, Fondazione Eni Enrico Mattei (FEEM).
    5. Gianluca Cubadda & Marco Mazzali, 2024. "The vector error correction index model: representation, estimation and identification," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
    6. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    7. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Discussion Paper 2015-001, Tilburg University, Center for Economic Research.
    8. Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
    9. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    10. Ramya Rajajagadeesan Aroul & Peggy E. Swanson, 2018. "Linkages Between the Foreign Exchange Markets of BRIC Countries—Brazil, Russia, India and China—and the USA," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 333-353, December.
    11. Qizilbash, M., 1995. "Egalitarian justice, capability and well-being prospects," Discussion Paper Series In Economics And Econometrics 9516, Economics Division, School of Social Sciences, University of Southampton.
    12. Eleni Constantinou & Avo Kazandjian & Georgios P. Kouretas & Vera Tahmazian, 2008. "Common Stochastic Trends Among The Cyprus Stock Exchange And The Ase, Lse And Nyse," Bulletin of Economic Research, Wiley Blackwell, vol. 60(4), pages 327-349, October.
    13. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    14. Fatma Ozgu Serttas, 2018. "Infinite-Variance Error Structure in Finance and Economics," International Econometric Review (IER), Econometric Research Association, vol. 10(1), pages 14-23, April.
    15. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    16. M. Angeles Carnero & Jose Olmo & Lorenzo Pascual, 2018. "Modelling the Dynamics of Fuel and EU Allowance Prices during Phase 3 of the EU ETS," Energies, MDPI, vol. 11(11), pages 1-23, November.
    17. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2021. "Spurious relationships in high-dimensional systems with strong or mild persistence," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1480-1497.
    18. Madura, J. & Wiley, M. K. & Zarruk, E. R., 1998. "Cointegration of term structure premiums across countries," Journal of Multinational Financial Management, Elsevier, vol. 8(4), pages 393-412, November.
    19. Norman J. Morin, 2006. "Likelihood ratio tests on cointegrating vectors, disequilibrium adjustment vectors, and their orthogonal complements," Finance and Economics Discussion Series 2006-21, Board of Governors of the Federal Reserve System (U.S.).
    20. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.13894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.