Author
Listed:
- He, Yong
- Li, Lingxiao
- Liu, Dong
- Zhou, Wen-Xin
Abstract
Factor models have been widely used in economics and finance. However, the heavy-tailed nature of macroeconomic and financial data is often neglected in statistical analysis. To address this issue, we propose a robust approach to estimate factor loadings and scores by minimizing the Huber loss function, which is motivated by the equivalence between conventional Principal Component Analysis (PCA) and the constrained least squares method in the factor model. We provide two algorithms that use different penalty forms. The first algorithm involves an element-wise-type Huber loss minimization, solved by an iterative Huber regression algorithm. The second algorithm, which we refer to as Huber PCA, minimizes the ℓ2-norm-type Huber loss and performs PCA on the weighted sample covariance matrix. We examine the theoretical minimizer of the element-wise Huber loss function and demonstrate that it has the same convergence rate as conventional PCA when the idiosyncratic errors have bounded second moments. We also derive their asymptotic distributions under mild conditions. Moreover, we suggest a consistent model selection criterion that relies on rank minimization to estimate the number of factors robustly. We showcase the benefits of the proposed two algorithms through extensive numerical experiments and a real macroeconomic data example. An R package named “HDRFA” 11https://cran.r-project.org/web/packages/HDRFA/index.html. has been developed to conduct the proposed robust factor analysis.
Suggested Citation
He, Yong & Li, Lingxiao & Liu, Dong & Zhou, Wen-Xin, 2025.
"Huber Principal Component Analysis for large-dimensional factor models,"
Journal of Econometrics, Elsevier, vol. 249(PB).
Handle:
RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000478
DOI: 10.1016/j.jeconom.2025.105993
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000478. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.