IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v8y2020i1p3-d316273.html
   My bibliography  Save this article

Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors

Author

Listed:
  • Matteo Barigozzi

    (Università di Bologna, Department of Economics, 40126 Bologna, Italy)

  • Marco Lippi

    (Einaudi Institute for Economics and Finance, 00187 Roma, Italy)

  • Matteo Luciani

    (Federal Reserve Board of Governors, Washington, DC 20551, USA)

Abstract

Large-dimensional dynamic factor models and dynamic stochastic general equilibrium models, both widely used in empirical macroeconomics, deal with singular stochastic vectors, i.e., vectors of dimension r which are driven by a q -dimensional white noise, with q < r . The present paper studies cointegration and error correction representations for an I ( 1 ) singular stochastic vector y t . It is easily seen that y t is necessarily cointegrated with cointegrating rank c ≥ r − q . Our contributions are: (i) we generalize Johansen’s proof of the Granger representation theorem to I ( 1 ) singular vectors under the assumption that y t has rational spectral density; (ii) using recent results on singular vectors by Anderson and Deistler, we prove that for generic values of the parameters the autoregressive representation of y t has a finite-degree polynomial. The relationship between the cointegration of the factors and the cointegration of the observable variables in a large-dimensional factor model is also discussed.

Suggested Citation

  • Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2020. "Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors," Econometrics, MDPI, vol. 8(1), pages 1-23, February.
  • Handle: RePEc:gam:jecnmx:v:8:y:2020:i:1:p:3-:d:316273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/8/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/8/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
    2. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2017. "Structural FECM: Cointegration in large‐scale structural FAVAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1069-1086, September.
    3. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    5. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    6. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    7. Bauer, Dietmar & Wagner, Martin, 2012. "A State Space Canonical Form For Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1313-1349, December.
    8. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, vol. 15(4), pages 469-518, August.
    9. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    10. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    11. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    12. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    13. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    14. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    15. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    16. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    17. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    18. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    19. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    20. Phillips, Peter C. B., 1998. "Impulse response and forecast error variance asymptotics in nonstationary VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 21-56.
    21. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    22. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    23. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    24. Deistler, Manfred & Wagner, Martin, 2017. "Cointegration in singular ARMA models," Economics Letters, Elsevier, vol. 155(C), pages 39-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Casoli & Riccardo (Jack) Lucchetti, 2022. "Permanent-Transitory decomposition of cointegrated time series via dynamic factor models, with an application to commodity prices [Commodity-price comovement and global economic activity]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 494-514.
    2. Sergej Gričar & Štefan Bojnec, 2021. "Technical Analysis of Tourism Price Process in the Eurozone," JRFM, MDPI, vol. 14(11), pages 1-25, October.
    3. Donato Ceci & Andrea Silvestrini, 2023. "Nowcasting the state of the Italian economy: The role of financial markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1569-1593, November.
    4. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    5. Feng, Zongbao & Chen, Weiya & Liu, Yang & Chen, Hongyu & Skibniewski, Mirosław J., 2023. "Long-term equilibrium relationship analysis and energy-saving measures of metro energy consumption and its influencing factors based on cointegration theory and an ARDL model," Energy, Elsevier, vol. 263(PD).
    6. Lippi, Marco & Deistler, Manfred & Anderson, Brian, 2023. "High-Dimensional Dynamic Factor Models: A Selective Survey and Lines of Future Research," Econometrics and Statistics, Elsevier, vol. 26(C), pages 3-16.
    7. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    8. Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.
    9. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
    10. Li, Y-N. & Chen, J. & Linton, O., 2021. "Estimation of Common Factors for Microstructure Noise and Efficient Price in a High-frequency Dual Factor Model," Cambridge Working Papers in Economics 2150, Faculty of Economics, University of Cambridge.
    11. Tibor Szendrei & Katalin Varga, 2020. "FISS - A Factor-based Index of Systemic Stress in the Financial System," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 3-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    2. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2014. "Dynamic Factor Models, Cointegration and Error Correction Mechanisms," Working Papers ECARES ECARES 2014-14, ULB -- Universite Libre de Bruxelles.
    3. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    4. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    5. Forni, Mario & Gambetti, Luca & Lippi, Marco & Sala, Luca, 2020. "Common Component Structural VARs," CEPR Discussion Papers 15529, C.E.P.R. Discussion Papers.
    6. Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.
    7. Lucchetti, Riccardo & Venetis, Ioannis A., 2020. "A replication of "A quasi-maximum likelihood approach for large, approximate dynamic factor models" (Review of Economics and Statistics, 2012)," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 14, pages 1-14.
    8. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    9. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    10. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    11. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    12. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    13. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
    14. Mario Forni & Luca Gambetti, 2010. "Macroeconomic Shocks and the Business Cycle: Evidence from a Structural Factor Model," Center for Economic Research (RECent) 040, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    15. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    16. Chiara Casoli & Riccardo (Jack) Lucchetti, 2022. "Permanent-Transitory decomposition of cointegrated time series via dynamic factor models, with an application to commodity prices [Commodity-price comovement and global economic activity]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 494-514.
    17. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    18. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    19. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    21. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:8:y:2020:i:1:p:3-:d:316273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.