IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v593y2021i7857d10.1038_s41586-021-03427-0.html
   My bibliography  Save this article

The Paris Climate Agreement and future sea-level rise from Antarctica

Author

Listed:
  • Robert M. DeConto

    (University of Massachusetts Amherst)

  • David Pollard

    (Pennsylvania State University)

  • Richard B. Alley

    (Pennsylvania State University
    Pennsylvania State University)

  • Isabella Velicogna

    (University of California)

  • Edward Gasson

    (University of Bristol)

  • Natalya Gomez

    (McGill University)

  • Shaina Sadai

    (University of Massachusetts Amherst)

  • Alan Condron

    (Woods Hole Oceanographic Institution)

  • Daniel M. Gilford

    (Rutgers University)

  • Erica L. Ashe

    (Rutgers University)

  • Robert E. Kopp

    (Rutgers University)

  • Dawei Li

    (University of Massachusetts Amherst
    Shanghai Jiao Tong University)

  • Andrea Dutton

    (University of Wisconsin-Madison)

Abstract

The Paris Agreement aims to limit global mean warming in the twenty-first century to less than 2 degrees Celsius above preindustrial levels, and to promote further efforts to limit warming to 1.5 degrees Celsius1. The amount of greenhouse gas emissions in coming decades will be consequential for global mean sea level (GMSL) on century and longer timescales through a combination of ocean thermal expansion and loss of land ice2. The Antarctic Ice Sheet (AIS) is Earth’s largest land ice reservoir (equivalent to 57.9 metres of GMSL)3, and its ice loss is accelerating4. Extensive regions of the AIS are grounded below sea level and susceptible to dynamical instabilities5–8 that are capable of producing very rapid retreat8. Yet the potential for the implementation of the Paris Agreement temperature targets to slow or stop the onset of these instabilities has not been directly tested with physics-based models. Here we use an observationally calibrated ice sheet–shelf model to show that with global warming limited to 2 degrees Celsius or less, Antarctic ice loss will continue at a pace similar to today’s throughout the twenty-first century. However, scenarios more consistent with current policies (allowing 3 degrees Celsius of warming) give an abrupt jump in the pace of Antarctic ice loss after around 2060, contributing about 0.5 centimetres GMSL rise per year by 2100—an order of magnitude faster than today4. More fossil-fuel-intensive scenarios9 result in even greater acceleration. Ice-sheet retreat initiated by the thinning and loss of buttressing ice shelves continues for centuries, regardless of bedrock and sea-level feedback mechanisms10–12 or geoengineered carbon dioxide reduction. These results demonstrate the possibility that rapid and unstoppable sea-level rise from Antarctica will be triggered if Paris Agreement targets are exceeded.

Suggested Citation

  • Robert M. DeConto & David Pollard & Richard B. Alley & Isabella Velicogna & Edward Gasson & Natalya Gomez & Shaina Sadai & Alan Condron & Daniel M. Gilford & Erica L. Ashe & Robert E. Kopp & Dawei Li , 2021. "The Paris Climate Agreement and future sea-level rise from Antarctica," Nature, Nature, vol. 593(7857), pages 83-89, May.
  • Handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03427-0
    DOI: 10.1038/s41586-021-03427-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03427-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03427-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto-Jesus Perea-Moreno, 2021. "Renewable Energy and Energy Saving: Worldwide Research Trends," Sustainability, MDPI, vol. 13(23), pages 1-3, November.
    2. Francesco Giancaterini & Alain Hecq & Claudio Morana, 2022. "Is Climate Change Time-Reversible?," Econometrics, MDPI, vol. 10(4), pages 1-18, December.
    3. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    4. Gustavo G. Koch & Caio R. D. Osório & Ricardo C. L. F. Oliveira & Vinícius F. Montagner, 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters," Energies, MDPI, vol. 16(4), pages 1-24, February.
    5. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Akin A. Cilekoglu, 2024. "Emissions and Allowances in the EU Emissions Trading System after the Paris Agreement," IREA Working Papers 202404, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:593:y:2021:i:7857:d:10.1038_s41586-021-03427-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.