IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v168y2022ics0301421522003536.html
   My bibliography  Save this article

Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design

Author

Listed:
  • Salman, Muhammad
  • Long, Xingle
  • Wang, Guimei
  • Zha, Donglan

Abstract

The most remarkable global climate agreement to date, the Paris Agreement of 2015 requires all countries to set emissions-reduction commitments. However, experts say that the pledges are not enough to prevent the global average temperature from rising 1.5 °C. This study adopts the Paris Agreement as a quasi-natural experiment and evaluates its policy intervention on environmental efficiency as well as GHG emissions in 162 countries from 1990 to 2020. We applied a global Malmquist-luenberger productivity (GML) index to measure global environmental efficiency. Moreover, we used seven major sources of GHG emissions to develop a comprehensive indicator of environmental degradation using the Principle Component Analysis (PCA). Results showed that developed countries experienced an increase in environmental efficiency, whereas developing and least developing countries (LDCs) showed decline. Technological progress was the key component of environmental efficiency in developed countries, while technical efficiency was the main indicator in developing countries and LDCs. Results of fuzzy regression discontinuity analysis documented that the policy intervention of the Paris Agreement was conducive to the global environmental efficiency by reducing the level of GHG emissions. However, the implementation of the Paris Agreement exerted heterogeneous effects on environmental efficiency with developed countries relatively experienced more profound effect.

Suggested Citation

  • Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003536
    DOI: 10.1016/j.enpol.2022.113128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522003536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.113128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jocelyn Timperley, 2021. "The broken $100-billion promise of climate finance — and how to fix it," Nature, Nature, vol. 598(7881), pages 400-402, October.
    2. Handayani, Kamia & Anugrah, Pinto & Goembira, Fadjar & Overland, Indra & Suryadi, Beni & Swandaru, Akbar, 2022. "Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050," Applied Energy, Elsevier, vol. 311(C).
    3. He, Xiaoping, 2019. "China's electrification and rural labor: Analysis with fuzzy regression discontinuity," Energy Economics, Elsevier, vol. 81(C), pages 650-660.
    4. Yang, Junwen & Chen, Bin, 2021. "Energy efficiency evaluation of wastewater treatment plants (WWTPs) based on data envelopment analysis," Applied Energy, Elsevier, vol. 289(C).
    5. Liu, Weifeng & McKibbin, Warwick J. & Morris, Adele C. & Wilcoxen, Peter J., 2020. "Global economic and environmental outcomes of the Paris Agreement," Energy Economics, Elsevier, vol. 90(C).
    6. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    7. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    8. Riera, Félix Sebastián & Brümmer, Bernhard, 2022. "Environmental efficiency of wine grape production in Mendoza, Argentina," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Reto Knutti & Joeri Rogelj, 2015. "The legacy of our CO 2 emissions: a clash of scientific facts, politics and ethics," Climatic Change, Springer, vol. 133(3), pages 361-373, December.
    10. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    11. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    12. Battistin, Erich & Rettore, Enrico, 2008. "Ineligibles and eligible non-participants as a double comparison group in regression-discontinuity designs," Journal of Econometrics, Elsevier, vol. 142(2), pages 715-730, February.
    13. Chen, Yi & Long, Xingle & Salman, Muhammad, 2021. "Did the 2014 Nanjing Youth Olympic Games enhance environmental efficiency? New evidence from a quasi-natural experiment," Energy Policy, Elsevier, vol. 159(C).
    14. Robert M. DeConto & David Pollard & Richard B. Alley & Isabella Velicogna & Edward Gasson & Natalya Gomez & Shaina Sadai & Alan Condron & Daniel M. Gilford & Erica L. Ashe & Robert E. Kopp & Dawei Li , 2021. "The Paris Climate Agreement and future sea-level rise from Antarctica," Nature, Nature, vol. 593(7857), pages 83-89, May.
    15. Jiang, Yufan & Wang, Hongyan & Liu, Zuankuo, 2021. "The impact of the free trade zone on green total factor productivity ——evidence from the shanghai pilot free trade zone," Energy Policy, Elsevier, vol. 148(PB).
    16. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    17. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    21. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    22. John M. Reilly & Y.-H. Henry Chen & Henry D. Jacoby, 2021. "The COVID-19 effect on the Paris agreement," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-4, December.
    23. Joeri Rogelj & Oliver Fricko & Malte Meinshausen & Volker Krey & Johanna J. J. Zilliacus & Keywan Riahi, 2017. "Understanding the origin of Paris Agreement emission uncertainties," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    24. Liu, Yunqiang & Liu, Sha & Shao, Xiaoyu & He, Yanqiu, 2022. "Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    25. Paramati, Sudharshan Reddy & Shahzad, Umer & Doğan, Buhari, 2022. "The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    26. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).
    27. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    28. Siriwardana, Mahinda & Nong, Duy, 2021. "Nationally Determined Contributions (NDCs) to decarbonise the world: A transitional impact evaluation," Energy Economics, Elsevier, vol. 97(C).
    29. Zhang, Hua & Xu, Tiantian & Feng, Chao, 2022. "Does public participation promote environmental efficiency? Evidence from a quasi-natural experiment of environmental information disclosure in China," Energy Economics, Elsevier, vol. 108(C).
    30. Miyazaki, Takeshi, 2020. "Intergovernmental fiscal transfers and tax efforts: Regression-discontinuity analysis for Japanese local governments," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    31. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Dong, Kangyin & Liu, Li-Jing, 2022. "The cost-benefit comparisons of China's and India's NDCs based on carbon marginal abatement cost curves," Energy Economics, Elsevier, vol. 109(C).
    32. Das, Narasingha & Bera, Pinki & Panda, Deepak, 2022. "Can economic development & environmental sustainability promote renewable energy consumption in India?? Findings from novel dynamic ARDL simulations approach," Renewable Energy, Elsevier, vol. 189(C), pages 221-230.
    33. Carlson, D'Arcy & Robinson, Stacy-ann & Blair, Catherine & McDonough, Marjorie, 2021. "China's climate ambition: Revisiting its First Nationally Determined Contribution and centering a just transition to clean energy," Energy Policy, Elsevier, vol. 155(C).
    34. Lee, David S. & Card, David, 2008. "Regression discontinuity inference with specification error," Journal of Econometrics, Elsevier, vol. 142(2), pages 655-674, February.
    35. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    36. Sun, Huaping & Kporsu, Anthony Kwaku & Taghizadeh-Hesary, Farhad & Edziah, Bless Kofi, 2020. "Estimating environmental efficiency and convergence: 1980 to 2016," Energy, Elsevier, vol. 208(C).
    37. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    38. Muhammad, Sulaman & Pan, Yanchun & Agha, Mujtaba Hassan & Umar, Muhammad & Chen, Siyuan, 2022. "Industrial structure, energy intensity and environmental efficiency across developed and developing economies: The intermediary role of primary, secondary and tertiary industry," Energy, Elsevier, vol. 247(C).
    39. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-209, January.
    40. Qamruzzaman, Md, 2022. "Nexus between renewable energy, foreign direct investment, and agro-productivity: The mediating role of carbon emission," Renewable Energy, Elsevier, vol. 184(C), pages 526-540.
    41. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
    42. Shahbaz, Muhammad & Li, Jiaman & Dong, Xiucheng & Dong, Kangyin, 2022. "How financial inclusion affects the collaborative reduction of pollutant and carbon emissions: The case of China," Energy Economics, Elsevier, vol. 107(C).
    43. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    44. Pieter Pauw & Kennedy Mbeva & Harro Asselt, 2019. "Subtle differentiation of countries’ responsibilities under the Paris Agreement," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-7, December.
    45. Frances C. Moore & Katherine Lacasse & Katharine J. Mach & Yoon Ah Shin & Louis J. Gross & Brian Beckage, 2022. "Determinants of emissions pathways in the coupled climate–social system," Nature, Nature, vol. 603(7899), pages 103-111, March.
    46. Heleen L. Soest & Michel G. J. Elzen & Detlef P. Vuuren, 2021. "Net-zero emission targets for major emitting countries consistent with the Paris Agreement," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    47. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    48. Mark Roelfsema & Heleen L. Soest & Mathijs Harmsen & Detlef P. Vuuren & Christoph Bertram & Michel Elzen & Niklas Höhne & Gabriela Iacobuta & Volker Krey & Elmar Kriegler & Gunnar Luderer & Keywan Ria, 2020. "Taking stock of national climate policies to evaluate implementation of the Paris Agreement," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    49. Stergiou, Eirini & Kounetas, Konstantinos, 2022. "Heterogeneity, spillovers and eco-efficiency of European industries under different pollutants’ scenarios. Is there a definite direction?," Ecological Economics, Elsevier, vol. 195(C).
    50. Wen-Chi Yang & Wen-Min Lu & Alagu Perumal Ramasamy, 2021. "International Environmental Efficiency Trends and the Impact of the Paris Agreement," Energies, MDPI, vol. 14(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Wuepper & Robert Finger, 2023. "Regression discontinuity designs in agricultural and environmental economics," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(1), pages 1-28.
    2. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    3. Sadowski, Arkadiusz & Wojcieszak-Zbierska, Monika Małgorzata & Zmyślona, Jagoda, 2024. "Agricultural production in the least developed countries and its impact on emission of greenhouse gases – An energy approach," Land Use Policy, Elsevier, vol. 136(C).
    4. Zhang, Fuyu & Wang, Qiang & Li, Rongrong, 2024. "Linking natural resource abundance and green growth: The role of energy transition," Resources Policy, Elsevier, vol. 91(C).
    5. Koguleshun Subramaniam & Kang Yao Wong & Kok Hoe Wong & Cheng Tung Chong & Jo-Han Ng, 2024. "Enhancing Biodiesel Production: A Review of Microchannel Reactor Technologies," Energies, MDPI, vol. 17(7), pages 1-37, March.
    6. Hernández Soto, Gonzalo, 2024. "The role of foreign direct investment and green technologies in facilitating the transition toward green economies in Latin America," Energy, Elsevier, vol. 288(C).
    7. Li, Tianyu & Yue, Xiao-Guang & Qin, Meng & Norena-Chavez, Diego, 2024. "Towards Paris Climate Agreement goals: The essential role of green finance and green technology," Energy Economics, Elsevier, vol. 129(C).
    8. Lu, Huaixin & Liao, Xinlin & Wu, Youqun, 2024. "From resource curse to green renaissance: Analyzing the dynamics of natural resource abundance on China's green total factor productivity during business cycles," Resources Policy, Elsevier, vol. 89(C).
    9. Soto, Gonzalo Hernández, 2024. "The effects of foreign direct investment on environmentally related technologies in Latin America," Resources Policy, Elsevier, vol. 90(C).
    10. Akin A. Cilekoglu, 2024. "Emissions and Allowances in the EU Emissions Trading System after the Paris Agreement," IREA Working Papers 202404, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
    11. Qin, Peijia & Tan, Xianlin & Huang, Youbin & Pan, Mingming & Ouyang, Tiancheng, 2023. "Two-stage robust optimal scheduling framework applied for microgrids: Combined energy recovery and forecast," Renewable Energy, Elsevier, vol. 214(C), pages 290-306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Villamizar‐Villegas & Freddy A. Pinzon‐Puerto & Maria Alejandra Ruiz‐Sanchez, 2022. "A comprehensive history of regression discontinuity designs: An empirical survey of the last 60 years," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1130-1178, September.
    2. Blaise Melly & Rafael Lalive, 2020. "Estimation, Inference, and Interpretation in the Regression Discontinuity Design," Diskussionsschriften dp2016, Universitaet Bern, Departement Volkswirtschaft.
    3. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    4. Eduardo Fé & Bruce Hollingsworth, 2016. "Short- and long-run estimates of the local effects of retirement on health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 1051-1067, October.
    5. Christelis, Dimitris & Georgarakos, Dimitris & Sanz-de-Galdeano, Anna, 2020. "The impact of health insurance on stockholding: A regression discontinuity approach," Journal of Health Economics, Elsevier, vol. 69(C).
    6. David Wilkinson & Rebecca Riley, 2011. "The UK Minimum Wage at Age 22: A Regression Discontinuity Approach," National Institute of Economic and Social Research (NIESR) Discussion Papers 378, National Institute of Economic and Social Research.
    7. Alessio Gaggero & Getinet Haile, 2020. "Does class size matter in postgraduate education?," Manchester School, University of Manchester, vol. 88(3), pages 489-505, June.
    8. Dolores De la Mata & Carlos Felipe Gaviria, 2015. "Losing Health Insurance When Young: Impacts on Usage of Medical Services and Health," CINCH Working Paper Series 1508, Universitaet Duisburg-Essen, Competent in Competition and Health, revised Aug 2015.
    9. Bauer, Thomas K. & Bender, Stefan & Paloyo, Alfredo R. & Schmidt, Christoph M., 2012. "Evaluating the labor-market effects of compulsory military service," European Economic Review, Elsevier, vol. 56(4), pages 814-829.
    10. Markus Frölich & Martin Huber, 2019. "Including Covariates in the Regression Discontinuity Design," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 736-748, October.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Maja Weemes Grøtting & Otto Sevaldson Lillebø, 2020. "Health effects of retirement: evidence from survey and register data," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(2), pages 671-704, April.
    13. Montoya, Ana Maria & Noton, Carlos & Solis, Alex, 2018. "The Returns to College Choice: Loans, Scholarships and Labor Outcomes," Working Paper Series 2018:12, Uppsala University, Department of Economics.
    14. Park, Albert & Shi, Xinzheng & Hsieh, Chang-tai & An, Xuehui, 2015. "Magnet high schools and academic performance in China: A regression discontinuity design," Journal of Comparative Economics, Elsevier, vol. 43(4), pages 825-843.
    15. Yang He & Otávio Bartalotti, 2020. "Wild bootstrap for fuzzy regression discontinuity designs: obtaining robust bias-corrected confidence intervals," The Econometrics Journal, Royal Economic Society, vol. 23(2), pages 211-231.
    16. Mazzutti, Caio Cícero Toledo Piza da Costa, 2016. "Three essays on the causal impacts of child labour laws in Brazil," Economics PhD Theses 0616, Department of Economics, University of Sussex Business School.
    17. David S. Lee & Thomas Lemieux, 2010. "Regression Discontinuity Designs in Economics," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 281-355, June.
    18. Jin-young Choi & Myoung-jae Lee, 2017. "Regression discontinuity: review with extensions," Statistical Papers, Springer, vol. 58(4), pages 1217-1246, December.
    19. Hans van Kippersluis, & Owen O’Donnell & Eddy van Doorslaer, 2011. "Long-Run Returns to Education: Does Schooling Lead to an Extended Old Age?," Journal of Human Resources, University of Wisconsin Press, vol. 46(4), pages 695-721.
    20. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2022. "Exploring the multidimensional effects of China's coal de-capacity policy: A regression discontinuity design," Resources Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.