IDEAS home Printed from https://ideas.repec.org/p/fri/fribow/fribow00489.html

Including covariates in the regression discontinuity design

Author

Listed:
  • Frölich, Markus
  • Huber, Martin

Abstract

This paper proposes a fully nonparametric kernel method to account for observed covariates in regression discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that conditioning on covariates reduces the asymptotic variance and allows estimating the treatment effect at the rate of one-dimensional nonparametric regression, irrespective of the dimension of the continuously distributed elements in the conditioning set. Furthermore, the proposed method may decrease bias and restore identification by controlling for discontinuities in the covariate distribution at the discontinuity threshold, provided that all relevant discontinuously distributed variables are controlled for. To illustrate the estimation approach and its properties, we provide a simulation study and an empirical application to an Austrian labor market reform.

Suggested Citation

  • Frölich, Markus & Huber, Martin, 2017. "Including covariates in the regression discontinuity design," FSES Working Papers 489, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
  • Handle: RePEc:fri:fribow:fribow00489
    as

    Download full text from publisher

    File URL: https://doc.rero.ch/record/305843/files/WP_SES_489.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fri:fribow:fribow00489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mustapha Obbad (email available below). General contact details of provider: https://edirc.repec.org/data/wsffrch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.