IDEAS home Printed from https://ideas.repec.org/a/cai/ecoldc/ecop_193_0077.html

Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture

Author

Listed:
  • Marie Bessec

Abstract

This paper discusses new bridge models for short-term forecasting of French quarterly GDP growth. The only data used are from business surveys in French manufacturing, services, and construction. We consider two alternative methods. The first relies on the general-to-specific (GETS) algorithm applied to blocks of randomly selected variables (Hendry and Krolzig, 2005) ; the other relies on the combination method popularized by Stock and Watson (2004). We conduct in-sample and out-of-sample assessments of both methods using recursive and rolling regressions. We show that the forecast based on an automatic regression-model selection (GETS) performs better, and that extending the database to business surveys in the service and construction sectors can be useful for short-term GDP forecasting.

Suggested Citation

  • Marie Bessec, 2010. "Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Economie & Prévision, La Documentation Française, vol. 0(2), pages 77-99.
  • Handle: RePEc:cai:ecoldc:ecop_193_0077
    as

    Download full text from publisher

    File URL: http://www.cairn.info/load_pdf.php?ID_ARTICLE=ECOP_193_0077
    Download Restriction: free

    File URL: http://www.cairn.info/revue-economie-et-prevision-1-2010-2-page-77.htm
    Download Restriction: free
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    2. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    3. Luboš Marek & Stanislava Hronová & Richard Hindls, 2019. "Možnosti odhadů krátkodobých makroekonomických agregátů na základě výsledků konjunkturních průzkumů [Possibilities of Estimations of Short-term Macroeconomic Aggregates Based on Business Survey Res," Politická ekonomie, Prague University of Economics and Business, vol. 2019(4), pages 347-370.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cai:ecoldc:ecop_193_0077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-Baptiste de Vathaire (email available below). General contact details of provider: https://www.cairn.info/revue-economie-et-prevision.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.