IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Bayesian Inference for the Mixed-Frequency VAR Model

  • Paul Viefers
Registered author(s):

    In this paper a mixed-frequency VAR à la Mariano & Murasawa (2004) with Markov regime switching in the parameters is estimated by Bayesian inference. Unlike earlier studies, that used the pseuo-EM algorithm of Dempster, Laird & Rubin (1977) to estimate the model, this paper describes how to make use of recent advances in Bayesian inference on mixture models. This way, one is able to surmount some well-known issues connected to inference on mixture models, e.g. the label switching problem. The paper features a numerical simulation study to gauge the model performance in terms of convergence to true parameter values and a small empirical example involving US business cycles.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 1172.

    in new window

    Length: 22 : Anh. p.
    Date of creation: 2011
    Date of revision:
    Handle: RePEc:diw:diwwpp:dp1172
    Contact details of provider: Postal:
    Mohrenstraße 58, D-10117 Berlin

    Phone: xx49-30-89789-0
    Fax: xx49-30-89789-200
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Christopher A. Sims, 1993. "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," NBER Chapters, in: Business Cycles, Indicators and Forecasting, pages 179-212 National Bureau of Economic Research, Inc.
    2. Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
    3. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    4. Konstantin A. KHOLODILIN, 2001. "Markov-Switching Common Dynamic Factor Model with Mixed-Frequency Data," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2001020, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    5. Tommaso Proietti & Filippo Moauro, 2004. "Dynamic Factor Analysis with Nonlinear Temporal Aggregation Constraints," Econometrics 0401003, EconWPA.
    6. James D. Hamilton, 2010. "Calling Recessions in Real Time," NBER Working Papers 16162, National Bureau of Economic Research, Inc.
    7. repec:dau:papers:123456789/6069 is not listed on IDEAS
    8. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    9. Stephen Goldfeld & Richard Quandt, 1973. "The Estimation of Structural Shifts by Switching Regressions," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 475-485 National Bureau of Economic Research, Inc.
    10. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    11. John C. Robertson & Ellis W. Tallman, 1999. "Improving forecasts of the federal funds rate in a policy model," FRB Atlanta Working Paper 99-3, Federal Reserve Bank of Atlanta.
    12. Christopher A. Sims & Tao Zha, 1996. "Bayesian methods for dynamic multivariate models," FRB Atlanta Working Paper 96-13, Federal Reserve Bank of Atlanta.
    13. Kadiyala, K. Rao & Karlsson, Sune, 1994. "Numerical Aspects of Bayesian VAR-modeling," SSE/EFI Working Paper Series in Economics and Finance 12, Stockholm School of Economics.
    14. Ivan Jeliazkov & Rui Liu, 2010. "A model-based ranking of U.S. recessions," Economics Bulletin, AccessEcon, vol. 30(3), pages 2289-2296.
    15. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(01), pages 108-124, April.
    16. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, 06.
    17. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.
    18. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    19. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
    20. John F. Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    21. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1172. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.