IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments

  • John Geweke

Data augmentation and Gibbs sampling are two closely related, sampling-based approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accuracy of the approximations to the expected value of functions of interest under the posterior. In this paper methods for spectral analysis are used to evaluate numerical accuracy formally and construct diagnostics for convergence. These methods are illustrated in the normal linear model with informative priors, and in the Tobit-censored regression model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.minneapolisfed.org/research/common/pub_detail.cfm?pb_autonum_id=429
Download Restriction: no

File URL: http://minneapolisfed.org/research/sr/sr148.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Minneapolis in its series Staff Report with number 148.

as
in new window

Length:
Date of creation: 1991
Date of revision:
Handle: RePEc:fip:fedmsr:148
Contact details of provider: Postal: 90 Hennepin Avenue, P.O. Box 291, Minneapolis, MN 55480-0291
Phone: (612) 204-5000
Web page: http://minneapolisfed.org/

More information through EDIRC

Order Information: Web: http://www.minneapolisfed.org/pubs/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  2. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
  3. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
  4. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
  5. Geweke, John, 1988. "Antithetic acceleration of Monte Carlo integration in Bayesian inference," Journal of Econometrics, Elsevier, vol. 38(1-2), pages 73-89.
  6. Wales, T J & Woodland, A D, 1980. "Sample Selectivity and the Estimation of Labor Supply Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 437-68, June.
  7. James Tobin, 1956. "Estimation of Relationships for Limited Dependent Variables," Cowles Foundation Discussion Papers 3R, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedmsr:148. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Janelle Ruswick)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.