IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2007015.html
   My bibliography  Save this paper

Simulation based Bayesian econometric inference: principles and some recent computational advances

Author

Listed:
  • HOOGERHEIDE, Lennart F.
  • VAN DIJK, Herman K.
  • VAN OEST, Rutger D.

Abstract

In this paper we discuss several aspects of simulation based Bayesian econometric inference. We start at an elementary level on basic concepts of Bayesian analysis; evaluating integrals by simulation methods is a crucial ingredient in Bayesian inference. Next, the most popular and well-known simulation techniques are discussed, the MetropolisHastings algorithm and Gibbs sampling (being the most popular Markov chain Monte Carlo methods) and importance sampling. After that, we discuss two recently developed sampling methods: adaptive radial based direction sampling [ARDS], which makes use of a transformation to radial coordinates, and neural network sampling, which makes use of a neural network approximation to the posterior distribution of interest. Both methods are especially useful in cases where the posterior distribution is not well-behaved, in the sense of having highly non-elliptical shapes. The simulation techniques are illustrated in several example models, such as a model for the real US GNP and models for binary data of a US recession indicator.

Suggested Citation

  • HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007. "Simulation based Bayesian econometric inference: principles and some recent computational advances," CORE Discussion Papers 2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2007015
    as

    Download full text from publisher

    File URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2007_15.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344.
    3. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    4. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    5. Roberts, G. O. & Gilks, W. R., 1994. "Convergence of Adaptive Direction Sampling," Journal of Multivariate Analysis, Elsevier, vol. 49(2), pages 287-298, May.
    6. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters,in: Credit and State Theories of Money, chapter 1 Edward Elgar Publishing.
    7. H. K. Van Dijk, 1999. "Some remarks on the simulation revolution in bayesian econometric inference," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 105-112.
    8. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    9. Bauwens, Luc & Bos, Charles S. & van Dijk, Herman K. & van Oest, Rutger D., 2004. "Adaptive radial-based direction sampling: some flexible and robust Monte Carlo integration methods," Journal of Econometrics, Elsevier, vol. 123(2), pages 201-225, December.
    10. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    11. van Dijk, H. K. & Kloek, T., 1980. "Further experience in Bayesian analysis using Monte Carlo integration," Journal of Econometrics, Elsevier, vol. 14(3), pages 307-328, December.
    12. Van Dijk, Herman K. & Kloek, Teun & Boender, C. Guus E., 1985. "Posterior moments computed by mixed integration," Journal of Econometrics, Elsevier, vol. 29(1-2), pages 3-18.
    13. Philippe Robert-Demontrond & R. Ringoot, 2004. "Introduction," Post-Print halshs-00081823, HAL.
    14. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoogerheide, Lennart & van Dijk, Herman K., 2010. "Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive importance sampling," International Journal of Forecasting, Elsevier, vol. 26(2), pages 231-247, April.
    2. Woźniak, Tomasz, 2015. "Testing causality between two vectors in multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 876-894.
    3. Matthieu Droumaguet & Tomasz Wozniak, 2012. "Bayesian Testing of Granger Causality in Markov-Switching VARs," Economics Working Papers ECO2012/06, European University Institute.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2007015. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.