IDEAS home Printed from https://ideas.repec.org/p/ctl/louvec/2005006.html
   My bibliography  Save this paper

Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models

Author

Listed:
  • Vincent, BODART

    (UNIVERSITE CATHOLIQUE DE LOUVAIN, Department of Economics)

  • Konstantin, KHOLODILIN
  • Fati, SHADMAN-MEHTA

    (UNIVERSITE CATHOLIQUE DE LOUVAIN, Department of Economics)

Abstract

This paper seeks to elaborate econometric models that can be used to forecast the turning points of the Belgian business cycle. We begin by suggesting three reference cycle, which we hope will fill the void of an official reference chronology for Belgium. We then construct two different types of model to estimate the probabilities of recession : Markov-switching models, and Logit models. We apply each approach to a limited set of data, which are a good representation of the economy, are available early and are subject to only minor revisions. We then select the best performing model for each chronology and type of approach. The out-of-sample results show that the models provide useful indicators of business cycle turning points. They are however far from perfect forecasting tools, especially when it comes to forecasting periods of classical recession.

Suggested Citation

  • Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
  • Handle: RePEc:ctl:louvec:2005006
    as

    Download full text from publisher

    File URL: http://sites.uclouvain.be/econ/DP/IRES/2005-6.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Vincent Bodart & Bertrand Candelon, 2000. "Appréhender la conjoncture à l'aide de la méthode de Stock-Watson : une application à l'économie belge," Économie et Prévision, Programme National Persée, vol. 146(5), pages 141-153.
    2. Marcelle Chauvet & Jeremy M. Piger, 2003. "Identifying business cycle turning points in real time," Review, Federal Reserve Bank of St. Louis, issue Mar, pages 47-61.
    3. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    4. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    7. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    8. Layton, Allan P. & Katsuura, Masaki, 2001. "Comparison of regime switching, probit and logit models in dating and forecasting US business cycles," International Journal of Forecasting, Elsevier, vol. 17(3), pages 403-417.
    9. Allan Layton & Anirvan Banerji, 2003. "What is a recession?: A reprise," Applied Economics, Taylor & Francis Journals, vol. 35(16), pages 1789-1797.
    10. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    11. Francis X. Diebold & Glenn D. Rudebusch, 1999. "Business Cycles: Durations, Dynamics, and Forecasting," Economics Books, Princeton University Press, edition 1, number 6636.
    12. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, July.
    13. Harding, Don & Pagan, Adrian, 2001. "Extracting, Using and Analysing Cyclical Information," MPRA Paper 15, University Library of Munich, Germany.
    14. James H. Stock & Mark W. Watson, 1988. "A Probability Model of The Coincident Economic Indicators," NBER Working Papers 2772, National Bureau of Economic Research, Inc.
    15. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 95-156 National Bureau of Economic Research, Inc.
    16. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    17. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    18. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legrand, Romain, 2014. "Euro introduction: Has there been a structural change? Study on 10 European Union countries," Economic Modelling, Elsevier, vol. 40(C), pages 136-151.
    2. Bruno, Giancarlo & Otranto, Edoardo, 2008. "Models to date the business cycle: The Italian case," Economic Modelling, Elsevier, vol. 25(5), pages 899-911, September.

    More about this item

    Keywords

    Refrence chronologies; Markov-Switching and Logit models; forecasting business cycle turning points;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ctl:louvec:2005006. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Virginie LEBLANC). General contact details of provider: http://edirc.repec.org/data/iruclbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.