IDEAS home Printed from https://ideas.repec.org/a/aea/aejmac/v9y2017i4p122-52.html
   My bibliography  Save this article

Noisy News in Business Cycles

Author

Listed:
  • Mario Forni
  • Luca Gambetti
  • Marco Lippi
  • Luca Sala

Abstract

We investigate the role of "noise" shocks as a source of business cycle fluctuations. To do so we set up a simple model of imperfect information and derive restrictions for identifying the noise shock in a VAR model. The novelty of our approach is that identification is reached by means of dynamic rotations of the reduced-form residuals. We find that noise shocks generate hump-shaped responses of GDP, consumption and investment, and account for a sizable fraction of their prediction error variance at business cycle horizons.

Suggested Citation

  • Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
  • Handle: RePEc:aea:aejmac:v:9:y:2017:i:4:p:122-52
    Note: DOI: 10.1257/mac.20150359
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/articles?id=10.1257/mac.20150359
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=9WqY00JLoYW3ncOb8dR6vjmdRksE-W6C
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=o99Owp4M1eM9q8zom92iXmIvbdjRO5By
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=9J4GCEe-A2hLRzkZkFQ13rFD7QZpA7N6
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert B. Barsky & Eric R. Sims, 2012. "Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence," American Economic Review, American Economic Association, vol. 102(4), pages 1343-1377, June.
    2. Den Haan, Wouter J. & Kaltenbrunner, Georg, 2009. "Anticipated growth and business cycles in matching models," Journal of Monetary Economics, Elsevier, vol. 56(3), pages 309-327, April.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    5. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    6. Olivier J. Blanchard & Jean-Paul L'Huillier & Guido Lorenzoni, 2013. "News, Noise, and Fluctuations: An Empirical Exploration," American Economic Review, American Economic Association, vol. 103(7), pages 3045-3070, December.
    7. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    8. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    9. Nir Jaimovich & Sergio Rebelo, 2009. "Can News about the Future Drive the Business Cycle?," American Economic Review, American Economic Association, vol. 99(4), pages 1097-1118, September.
    10. Karel Mertens & MortenO. Ravn, 2010. "Measuring the Impact of Fiscal Policy in the Face of Anticipation: A Structural VAR Approach," Economic Journal, Royal Economic Society, vol. 120(544), pages 393-413, May.
    11. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
    12. Lippi, Marco & Reichlin, Lucrezia, 1994. "VAR analysis, nonfundamental representations, blaschke matrices," Journal of Econometrics, Elsevier, vol. 63(1), pages 307-325, July.
    13. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    14. George-Marios Angeletos & Jennifer La'O, 2010. "Noisy Business Cycles," NBER Chapters,in: NBER Macroeconomics Annual 2009, Volume 24, pages 319-378 National Bureau of Economic Research, Inc.
    15. Mario Forni & Luca Gambetti, 2010. "Fiscal Foresight and the Effects of Government Spending," UFAE and IAE Working Papers 851.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    16. Lucas, Robert Jr., 1972. "Expectations and the neutrality of money," Journal of Economic Theory, Elsevier, vol. 4(2), pages 103-124, April.
    17. Barsky, Robert B. & Sims, Eric R., 2011. "News shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 58(3), pages 273-289.
    18. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    19. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    20. Baxter, Brad & Graham, Liam & Wright, Stephen, 2011. "Invertible and non-invertible information sets in linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 295-311, March.
    21. Guido Lorenzoni, 2009. "A Theory of Demand Shocks," American Economic Review, American Economic Association, vol. 99(5), pages 2050-2084, December.
    22. Guido Lorenzoni, 2010. "Optimal Monetary Policy with Uncertain Fundamentals and Dispersed Information ," Review of Economic Studies, Oxford University Press, vol. 77(1), pages 305-338.
    23. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2011. "Foresight and Information Flows," NBER Working Papers 16951, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E12 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Keynes; Keynesian; Post-Keynesian
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aejmac:v:9:y:2017:i:4:p:122-52. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael P. Albert). General contact details of provider: http://edirc.repec.org/data/aeaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.