IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1393.html
   My bibliography  Save this paper

Do Media Data Help to Predict German Industrial Production?

Author

Listed:
  • Konstantin A. Kholodilin
  • Tobias Thomas
  • Dirk Ulbricht

Abstract

Expectations form the basis of economic decisions of market participants in an uncertain world. Sentiment indicators reflect those expectations and thus have a proven track record for predicting economic variables. However, respondents of surveys perceive the world to a large extent with the help of media. So far, mainly very crude media information, such as word-count indices, has been used in the prediction of macroeconomic and financial variables. In this paper, we employ a rich data set provided by Media Tenor International, based on the sentiment analysis of all relevant media information in Germany from 2001 to 2014, whose results are transformed into several monthly indices. German industrial production is predicted in a real-time out-of-sample forecasting experiment using more than 17,000 models formed of all possible combinations with a maximum of 3 out of 48 macroeconomic, survey, and media indicators. It is demonstrated that media data are indispensable when it comes to the prediction of German industrial production both for individual models and as a part of combined forecasts. They increase reliability by improving accuracy and reducing instability of the forecasts, particularly during the recent global financial crisis.

Suggested Citation

  • Konstantin A. Kholodilin & Tobias Thomas & Dirk Ulbricht, 2014. "Do Media Data Help to Predict German Industrial Production?," Discussion Papers of DIW Berlin 1393, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1393
    as

    Download full text from publisher

    File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.467749.de/dp1393.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    2. Arthur T. Denzau & Douglass C. North, 1994. "Shared Mental Models: Ideologies and Institutions," Kyklos, Wiley Blackwell, vol. 47(1), pages 3-31, February.
    3. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    4. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    5. Konstantin Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?," KOF Working papers 10-256, KOF Swiss Economic Institute, ETH Zurich.
    6. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    7. von Hayek, Friedrich August, 1989. "The Pretence of Knowledge," American Economic Review, American Economic Association, vol. 79(6), pages 3-7, December.
    8. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US," Discussion Papers of DIW Berlin 997, DIW Berlin, German Institute for Economic Research.
    9. Jan Grossarth-Maticek & Johannes Mayr, 2008. "Medienberichte als Konjunkturindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 61(07), pages 17-29, April.
    10. J. M. Keynes, 1937. "The General Theory of Employment," The Quarterly Journal of Economics, Oxford University Press, vol. 51(2), pages 209-223.
    11. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    12. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    13. Ammann, Manuel & Frey, Roman & Verhofen, Michael, 2012. "Do Newspaper Articles Predict Aggregate Stock Returns?," Working Papers on Finance 1204, University of St. Gallen, School of Finance.
    14. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhardt, Lea & Dewenter, Ralf & Thomas, Tobias, 2020. "Watchdog or loyal servant? Political media bias in US newscasts," DICE Discussion Papers 348, University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    2. Berger, Johannes & Strohner, Ludwig & Thomas, Tobias, 2017. "Auswirkungen der Fluchtmigration auf Wachstum und Beschäftigung in Österreich," Policy Notes 13, EcoAustria – Institute for Economic Research.
    3. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    4. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    5. Ralf Dewenter & Uwe Dulleck & Tobias Thomas, 2020. "Does the 4th estate deliver? The Political Coverage Index and its application to media capture," Constitutional Political Economy, Springer, vol. 31(3), pages 292-328, September.
    6. Julia Wolfinger & Lars P. Feld & Ekkehard A. Köhler & Tobias Thomas, 2018. "57 Channels (And Nothin On) - Does TV-News on the Eurozone Affect Government Bond Yield Spreads?," CESifo Working Paper Series 7437, CESifo.
    7. Benjamin Beckers & Konstantin A. Kholodilin & Dirk Ulbricht, 2017. "Reading between the Lines: Using Media to Improve German Inflation Forecasts," Discussion Papers of DIW Berlin 1665, DIW Berlin, German Institute for Economic Research.
    8. Benesch, Christine & Loretz, Simon & Stadelmann, David & Thomas, Tobias, 2019. "Media coverage and immigration worries: Econometric evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 160(C), pages 52-67.
    9. Hirsch, Patrick & Köhler, Ekkehard A. & Feld, Lars P. & Thomas, Tobias, 2020. ""Whatever it takes!": How tonality of TV-news affects government bond yield spreads during crises," Freiburg Discussion Papers on Constitutional Economics 20/09, Walter Eucken Institut e.V..
    10. Schlösser, Alexander, 2020. "Forecasting industrial production in Germany: The predictive power of leading indicators," Ruhr Economic Papers 838, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Julia Wolfinger & Lars P. Feld & Ekkehard A. Köhler & Tobias Thomas, 2018. "57 Channels (And Nothin On) - Does TV-News on the Eurozone Affect Government Bond Yield Spreads?," CESifo Working Paper Series 7437, CESifo.
    12. Henzel Steffen R. & Wohlrabe Klaus & Lehmann Robert, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
    13. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    14. Müller, Henrik & Hornig, Nico, 2020. ""I heard the News today, oh Boy": An updated Version of our Uncertainty Perception Indicator (UPI) – and some general thoughts on news-based economic indicators," DoCMA Working Papers 2-2020, TU Dortmund University, Dortmund Center for Data-based Media Analysis (DoCMA).
    15. Konstantin A. Kholodilin & Christian Kolmer & Tobias Thomas & Dirk Ulbricht, 2015. "Asymmetric Perceptions of the Economy: Media, Firms, Consumers, and Experts," Discussion Papers of DIW Berlin 1490, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    2. Giuseppe Garofalo, 2014. "Irreducible complexities: from Gödel and Turing to the paradigm of Imperfect Knowledge Economics," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3463-3474, November.
    3. Ashok Chakravarti, 2012. "Institutions, Economic Performance and the Visible Hand," Books, Edward Elgar Publishing, number 14751.
    4. Benjamin Beckers & Konstantin A. Kholodilin & Dirk Ulbricht, 2017. "Reading between the Lines: Using Media to Improve German Inflation Forecasts," Discussion Papers of DIW Berlin 1665, DIW Berlin, German Institute for Economic Research.
    5. David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
    6. David Dequech, 2008. "Varieties of uncertainty: a survey of the economic literature," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807211223070, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    7. Semen Son-Turan, 2016. "The Impact of Investor Sentiment on the "Leverage Effect"," International Econometric Review (IER), Econometric Research Association, vol. 8(1), pages 4-18, April.
    8. Semen Son Turan, 2014. "Internet Search Volume and Stock Return Volatility: The Case of Turkish Companies," Information Management and Business Review, AMH International, vol. 6(6), pages 317-328.
    9. Jan Schnellenbach & Christian Schubert, 2014. "Behavioral Political Economy: A Survey," CESifo Working Paper Series 4988, CESifo.
    10. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing, vol. 36(1), pages 2-12, April.
    11. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    12. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    13. Cornelia Woll, 2010. "Firm Interests in Uncertain Times: Business Lobbying in Multilateral Service Liberalization," Sciences Po publications info:hdl:2441/f5vtl5h9a73, Sciences Po.
    14. Gianfranco Giulioni & Marcello Silvestri & Edgardo Bucciarelli, 2017. "Firms’ Finance in an Experimentally Microfounded Agent-Based Macroeconomic Model," Metroeconomica, Wiley Blackwell, vol. 68(2), pages 259-320, May.
    15. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    16. Hsiung Bingyuan, 2009. "Benchmarks and Economic Analysis," Review of Law & Economics, De Gruyter, vol. 5(1), pages 75-99, March.
    17. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    18. David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
    19. Lehmann Robert & Wohlrabe Klaus, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, De Gruyter, vol. 16(2), pages 226-254, May.
    20. Ronald Schettkat, 2018. "The Behavioral Economics of John Maynard Keynes," Schumpeter Discussion Papers sdp18007, Universitätsbibliothek Wuppertal, University Library.

    More about this item

    Keywords

    Forecast combination; media data; German industrial production; reliability index; R-word;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1393. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.