IDEAS home Printed from https://ideas.repec.org/a/kof/anskof/v7y2013i3p104-117.html
   My bibliography  Save this article

Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland

Author

Abstract

Can information extracted from newspaper articles help forecasting the economy? A new study at KOF in which we conduct a simple keyword search after the word "recession" in the newspapers Handelsblatt and Neue Zürcher Zeitung (NZZ), as an attempt to grasp the German and the Swiss business cycle respectively, provides positive evidence. A prediction model in which the keyword search is added performs equally well, if not better than established economic indicators in Germany and Switzerland. This applies also compared to predictions made with "Google Trends" data.

Suggested Citation

  • David Iselin & Boriss Siliverstovs, 2013. "Mit Zeitungen Konjunkturprognosen erstellen: Eine Vergleichsstudie für die Schweiz und Deutschland," KOF Analysen, KOF Swiss Economic Institute, ETH Zurich, vol. 7(3), pages 104-117, September.
  • Handle: RePEc:kof:anskof:v:7:y:2013:i:3:p:104-117
    DOI: 10.3929/ethz-a-005427569
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.3929/ethz-a-005427569
    Download Restriction: no

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US," Discussion Papers of DIW Berlin 997, DIW Berlin, German Institute for Economic Research.
    3. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    4. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    5. D'Amuri, Francesco & Marcucci, Juri, 2009. "'Google it!' Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. David Iselin & Boriss Siliverstovs, 2013. "The R-word index for Switzerland," Applied Economics Letters, Taylor & Francis Journals, vol. 20(11), pages 1032-1035, July.
    8. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    9. Michael J. Lamla & Jan-Egbert Sturm, 2013. "Interest Rate Expectations in the Media and Central Bank Communication," KOF Working papers 13-334, KOF Swiss Economic Institute, ETH Zurich.
    10. Matthias W. Uhl, 2011. "Nowcasting Private Consumption with TV Sentiment," KOF Working papers 11-293, KOF Swiss Economic Institute, ETH Zurich.
    11. Matthias W. Uhl, 2011. "Reuters Sentiment and Stock Returns," KOF Working papers 11-288, KOF Swiss Economic Institute, ETH Zurich.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Nowcasting; Recession; R-word Index; Google Trends; Newspapers; Switzerland; Germany;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kof:anskof:v:7:y:2013:i:3:p:104-117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/koethch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.