IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Measuring Regional Inequality by Internet Car Price Advertisements: Evidence for Germany

  • Konstantin A. Kholodilin
  • Boriss Siliverstovs

We suggest to use Internet car sale price advertisements for measuring economic inequality between and within German regions. Our estimates of regional income levels and Gini indices based on advertisements are highly, positively correlated with the official figures. This implies that the observed car prices can serve as a reasonably good proxy for income levels. In contrast to the traditional measures, our data can be fast and inexpensively retrieved from the web, and more importantly allow to estimate Gini indices at the NUTS2 level-something that never has been done before. Our approach to measuring regional inequality is a useful alternative source of information that could complement officially available measures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 1036.

in new window

Length: 15 p.
Date of creation: 2010
Date of revision:
Handle: RePEc:diw:diwwpp:dp1036
Contact details of provider: Postal: Mohrenstraße 58, D-10117 Berlin
Phone: xx49-30-89789-0
Fax: xx49-30-89789-200
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption? A Real-Time Evidence for the US," KOF Working papers 10-256, KOF Swiss Economic Institute, ETH Zurich.
  2. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
  3. D'Amuri, Francesco & Marcucci, Juri, 2009. "'Google it!' Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
  4. Peter Krause & Andrea Schäfer, 2005. "Verteilung von Vermögen und Einkommen in Deutschland: große Unterschiede nach Geschlecht und Alter," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 72(11), pages 199-207.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1036. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.