IDEAS home Printed from https://ideas.repec.org/p/zbw/dicedp/149.html
   My bibliography  Save this paper

Do media data help to predict German industrial production?

Author

Listed:
  • Kholodilin, Konstantin A.
  • Thomas, Tobias
  • Ulbricht, Dirk

Abstract

In an uncertain world, decisions by market participants are based on expectations. Thus, sentiment indicators reflecting expectations are proven at predicting economic variables. However, survey respondents largely perceive the world through media reports. Typically, crude media information, like word-count indices, is used in the prediction of macroeconomic and financial variables. Here, we employ a rich data set provided by Media Tenor International, based on sentiment analysis of opinion-leading media in Germany from 2001 to 2014, transformed into several monthly indices. German industrial production is predicted in a real-time out-of-sample forecasting experiment using more than 17,000 models formed of all possible combinations with a maximum of 3 out of 48 macroeconomic, survey, and media indicators. Media data are indispensable for the prediction of German industrial production both for individual models and as a part of combined forecasts, particularly during the global financial crisis.

Suggested Citation

  • Kholodilin, Konstantin A. & Thomas, Tobias & Ulbricht, Dirk, 2014. "Do media data help to predict German industrial production?," DICE Discussion Papers 149, University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
  • Handle: RePEc:zbw:dicedp:149
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/98712/1/790217295.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US," Discussion Papers of DIW Berlin 997, DIW Berlin, German Institute for Economic Research.
    2. Jan Grossarth-Maticek & Johannes Mayr, 2008. "Medienberichte als Konjunkturindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 61(07), pages 17-29, April.
    3. David Iselin & Boriss Siliverstovs, 2013. "Using Newspapers for Tracking the Business Cycle," KOF Working papers 13-337, KOF Swiss Economic Institute, ETH Zurich.
    4. J. M. Keynes, 1937. "The General Theory of Employment," The Quarterly Journal of Economics, Oxford University Press, vol. 51(2), pages 209-223.
    5. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    6. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2011. "Web search queries can predict stock market volumes," Papers 1110.4784, arXiv.org, revised Jun 2012.
    7. Konstantin Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?," KOF Working papers 10-256, KOF Swiss Economic Institute, ETH Zurich.
    8. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    9. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    10. Denzau, Arthur T & North, Douglass C, 1994. "Shared Mental Models: Ideologies and Institutions," Kyklos, Wiley Blackwell, vol. 47(1), pages 3-31.
    11. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    12. von Hayek, Friedrich August, 1989. "The Pretence of Knowledge," American Economic Review, American Economic Association, vol. 79(6), pages 3-7, December.
    13. Ammann, Manuel & Frey, Roman & Verhofen, Michael, 2012. "Do Newspaper Articles Predict Aggregate Stock Returns?," Working Papers on Finance 1204, University of St. Gallen, School of Finance.
    14. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henzel Steffen R. & Wohlrabe Klaus & Lehmann Robert, 2015. "Nowcasting Regional GDP: The Case of the Free State of Saxony," Review of Economics, De Gruyter, vol. 66(1), pages 71-98, April.
    2. Benjamin Beckers & Konstantin A. Kholodilin & Dirk Ulbricht, 2017. "Reading between the Lines: Using Media to Improve German Inflation Forecasts," Discussion Papers of DIW Berlin 1665, DIW Berlin, German Institute for Economic Research.
    3. Christine Benesch & Simon Loretz & David Stadelmann & Tobias Thomas, 2018. "Media Coverage and Immigration Worries: Econometric Evidence," CREMA Working Paper Series 2018-03, Center for Research in Economics, Management and the Arts (CREMA).
    4. Kholodilin, Konstantin & Kolmer, Christian & Thomas, Tobias & Ulbricht, Dirk, 2015. "Asymmetric perceptions of the economy: Media, firms, consumers, and experts," DICE Discussion Papers 188, University of Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).

    More about this item

    Keywords

    forecast combination; media data; German industrial production; reliability index; R-word;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:dicedp:149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/diduede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.