IDEAS home Printed from https://ideas.repec.org/p/drm/wpaper/2012-19.html
   My bibliography  Save this paper

Financial variables as leading indicators of GDP growth: Evidence from a MIDAS approach during the Great Recession

Author

Listed:
  • Laurent Ferrara
  • Clément Marsilli

Abstract

The global economic recession, referred to as the Great Recession, endured by the main industrialized countries during the period 2008-09, in the wake of the financial and banking crisis, has pointed out the current importance of the financial sector in macroeconomics. In this paper, we evaluate the predictive power of some major financial variables to anticipate GDP growth in euro area countries during this specific period of time. In this respect, we implement a MIDAS-based modeling approach, put forward by Ghysels et al. (2007), that enables to forecast quarterly GDP growth rates using exogenous variables sampled at higher frequencies. Empirical results show that, overall, stock prices help to improve the accuracy of GDP forecasts by comparison with a standard opinion survey variable, while oil prices and term spread appear to be less informative.

Suggested Citation

  • Laurent Ferrara & Clément Marsilli, 2012. "Financial variables as leading indicators of GDP growth: Evidence from a MIDAS approach during the Great Recession," EconomiX Working Papers 2012-19, University of Paris Nanterre, EconomiX.
  • Handle: RePEc:drm:wpaper:2012-19
    as

    Download full text from publisher

    File URL: http://economix.fr/pdf/dt/2012/WP_EcoX_2012-19.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    3. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    4. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    5. Farmer, Roger E.A., 2012. "The stock market crash of 2008 caused the Great Recession: Theory and evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 693-707.
    6. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    7. Annabelle Mourougane & Moreno Roma, 2003. "Can confidence indicators be useful to predict short term real GDP growth?," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 519-522.
    8. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    9. Duarte, Agustin & Venetis, Ioannis A. & Paya, Ivan, 2005. "Predicting real growth and the probability of recession in the Euro area using the yield spread," International Journal of Forecasting, Elsevier, vol. 21(2), pages 261-277.
    10. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    11. Laurent Ferrara, 2007. "Point and interval nowcasts of the Euro area IPI," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 115-120.
    12. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent Ferrara & Clément Marsilli, 2019. "Nowcasting global economic growth: A factor‐augmented mixed‐frequency approach," The World Economy, Wiley Blackwell, vol. 42(3), pages 846-875, March.
    2. Mittal, Amit & Garg, Ajay Kumar, 2018. "Bank stocks inform higher growth – A System GMM analysis of ten emerging markets in Asia," MPRA Paper 98253, University Library of Munich, Germany.
    3. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    4. Gong, Yuting & Chen, Qiang & Liang, Jufang, 2018. "A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets," Economic Modelling, Elsevier, vol. 68(C), pages 586-598.
    5. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    6. Petralias, Athanassios & Petros, Sotirios & Prodromídis, Pródromos, 2013. "Greece in recession: economic predictions, mispredictions and policy implications," LSE Research Online Documents on Economics 52626, London School of Economics and Political Science, LSE Library.
    7. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    8. Mittal, Amit & Garg, Ajay Kumar, 2021. "Bank stocks inform higher growth—A System GMM analysis of ten emerging markets in Asia," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 210-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    2. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    3. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    4. Nicholas Apergis & James E. Payne, 2013. "New Evidence on the Information and Predictive Content of the Baltic Dry Index," IJFS, MDPI, vol. 1(3), pages 1-19, July.
    5. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    6. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    7. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    8. Conrad, Christian & Loch, Karin & Rittler, Daniel, 2014. "On the macroeconomic determinants of long-term volatilities and correlations in U.S. stock and crude oil markets," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 26-40.
    9. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    10. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    11. Thomas Walther & Lanouar Charfeddine & Tony Klein, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," Working Papers on Finance 1816, University of St. Gallen, School of Finance.
    12. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," Working Papers halshs-02549044, HAL.
    13. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    14. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    15. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    16. Marie Bessec, 2015. "Revisiting the transitional dynamics of business-cycle phases with mixed frequency data," Post-Print hal-01276824, HAL.
    17. B. De Backer & M. Deroose & Ch. Van Nieuwenhuyze, 2019. "Is a recession imminent? The signal of the yield curve," Economic Review, National Bank of Belgium, issue i, pages 69-93, June.
    18. Knut Lehre Seip & Dan Zhang, 2021. "The Yield Curve as a Leading Indicator: Accuracy and Timing of a Parsimonious Forecasting Model," Forecasting, MDPI, vol. 3(2), pages 1-16, May.
    19. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    20. Chatterjee, Ujjal K., 2016. "Do stock market trading activities forecast recessions?," Economic Modelling, Elsevier, vol. 59(C), pages 370-386.

    More about this item

    Keywords

    Great Recession; Forecasting; Financial variables; MIDAS approach;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:drm:wpaper:2012-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/modemfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valerie Mignon (email available below). General contact details of provider: https://edirc.repec.org/data/modemfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.