IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v20y2001i6p405-24.html
   My bibliography  Save this article

Forecasting UK Industrial Production over the Business Cycle

Author

Listed:
  • Simpson, Paul W
  • Osborn, Denise R
  • Sensier, Marianne

Abstract

This paper examines the information available through leading indicators for modelling and forecasting the UK quarterly index of production. Both linear and non-linear specifications are examined, with the latter being of the Markov-switching type as used in many recent business cycle applications. The Markov-switching models perform relatively poorly in forecasting the 1990s production recession, but a three-indicator linear specification does well. The leading indicator variables in this latter model include a short-term interest rate, the stock market dividend yield and the optimism balance from the quarterly CBI survey. Copyright © 2001 by John Wiley & Sons, Ltd.

Suggested Citation

  • Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
  • Handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:405-24
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    2. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    3. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Modelling Business Cycle Movements in the UK Economy," Economica, London School of Economics and Political Science, vol. 68(270), pages 243-267, May.
    4. Engle, Robert F., 1982. "A general approach to lagrange multiplier model diagnostics," Journal of Econometrics, Elsevier, vol. 20(1), pages 83-104, October.
    5. Artis, Michael J & Kontolemis, Zenon G & Osborn, Denise R, 1997. "Business Cycles for G7 and European Countries," The Journal of Business, University of Chicago Press, vol. 70(2), pages 249-279, April.
    6. Breusch, T S, 1978. "Testing for Autocorrelation in Dynamic Linear Models," Australian Economic Papers, Wiley Blackwell, vol. 17(31), pages 334-355, December.
    7. Driffill, John & Sola, Martin, 1998. "Intrinsic bubbles and regime-switching," Journal of Monetary Economics, Elsevier, vol. 42(2), pages 357-373, July.
    8. Ramsey James B., 1996. "If Nonlinear Models Cannot Forecast, What Use Are They?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(2), pages 1-24, July.
    9. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    10. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
    11. Artis, Michael J, et al, 1995. "Turning Point Prediction for the UK Using CSO Leading Indicators," Oxford Economic Papers, Oxford University Press, vol. 47(3), pages 397-417, July.
    12. Andreou, Elena & Osborn, Denise R & Sensier, Marianne, 2000. "A Comparison of the Statistical Properties of Financial Variables in the USA, UK and Germany over the Business Cycle," Manchester School, University of Manchester, vol. 68(4), pages 396-418, Special I.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Giancarlo & Lupi Claudio, 2003. "Forecasting Euro-Area Industrial Production Using (Mostly) Business Surveys Data," ISAE Working Papers 33, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    2. Denise R. Osborn & Marianne Sensier, 2002. "The Prediction of Business Cycle Phases: Financial Variables and International Linkages," National Institute Economic Review, National Institute of Economic and Social Research, vol. 182(1), pages 96-105, October.
    3. Mirna Dumičić, 2014. "Financial Stress Indicators for Small, Open, Highly Euroised Countries – the Case of Croatia," Working Papers 41, The Croatian National Bank, Croatia.
    4. Siliverstovs, B. & van Dijk, D.J.C., 2003. "Forecasting industrial production with linear, nonlinear, and structural change models," Econometric Institute Research Papers EI 2003-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    6. Yuan, Chunming, 2011. "Forecasting exchange rates: The multi-state Markov-switching model with smoothing," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 342-362, April.
    7. Ioannis A. Venetis & David A. Peel & Ivan Paya, 2004. "Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 373-384.
    8. Bruno, Giancarlo, 2009. "Non-linear relation between industrial production and business surveys data," MPRA Paper 42337, University Library of Munich, Germany.
    9. Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
    10. Ferrara, L. & Marsilli, C. & Ortega, J-P., 2013. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Working papers 454, Banque de France.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:20:y:2001:i:6:p:405-24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.