IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v23y2004i5p373-384.html
   My bibliography  Save this article

Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting

Author

Listed:
  • Ioannis A. Venetis

    (Centre of Planning and Economic Research (KEPE), Athens, Greece)

  • David A. Peel

    (Lancaster University Management School, UK)

  • Ivan Paya

    (Departamento Fundamentos Analisis Economico, University of Alicante, Spain)

Abstract

We analyse the nonlinear behaviour of the information content in the spread for future real economic activity. The spread linearly predicts one-year-ahead real growth in nine industrial production sectors of the USA and four of the UK over the last 40 years. However, recent investigations on the spread-real activity relation have questioned both its linear nature and its time-invariant framework. Our in-sample empirical evidence suggests that the spread-real activity relationship exhibits asymmetries that allow for different predictive power of the spread when past spread values were above or below some threshold value. We then measure the out-of-sample forecast performance of the nonlinear model using predictive accuracy tests. The results show that significant improvement in forecasting accuracy, at least for one-step-ahead forecasts, can be obtained over the linear model. Copyright © 2004 John Wiley & Sons, Ltd.

Suggested Citation

  • Ioannis A. Venetis & David A. Peel & Ivan Paya, 2004. "Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 373-384.
  • Handle: RePEc:jof:jforec:v:23:y:2004:i:5:p:373-384
    DOI: 10.1002/for.921
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.921
    File Function: Link to full text; subscription required
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, March.
    2. Richard Clarida & Jordi Galí & Mark Gertler, 2000. "Monetary Policy Rules and Macroeconomic Stability: Evidence and Some Theory," The Quarterly Journal of Economics, Oxford University Press, vol. 115(1), pages 147-180.
    3. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
    4. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    5. Fuhrer, Jeffrey C & Moore, George R, 1995. "Monetary Policy Trade-offs and the Correlation between Nominal Interest Rates and Real Output," American Economic Review, American Economic Association, vol. 85(1), pages 219-239, March.
    6. Galbraith, John W. & Tkacz, Greg, 2000. "Testing for asymmetry in the link between the yield spread and output in the G-7 countries," Journal of International Money and Finance, Elsevier, vol. 19(5), pages 657-672, October.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Estrella, Arturo & Hardouvelis, Gikas A, 1991. " The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    10. Michael Dotsey, 1998. "The predictive content of the interest rate term spread for future economic growth," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 31-51.
    11. Edward Nelson, 2000. "UK monetary policy 1972-97: a guide using Taylor rules," Bank of England working papers 120, Bank of England.
    12. Plosser, Charles I. & Geert Rouwenhorst, K., 1994. "International term structures and real economic growth," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 133-155, February.
    13. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    14. Hansen Bruce E., 1997. "Inference in TAR Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
    15. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    16. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters,in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
    17. Venetis, Ioannis A. & Paya, Ivan & Peel, David A., 2003. "Re-examination of the predictability of economic activity using the yield spread: a nonlinear approach," International Review of Economics & Finance, Elsevier, vol. 12(2), pages 187-206.
    18. Frederique Bec, 2000. "Nonlinear Economic Policies: Pitfalls in the Lucas Critique Empirical Counterpart," Econometric Society World Congress 2000 Contributed Papers 1401, Econometric Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    2. Huseyin Kaya, 2013. "On the Predictive Power of Yield Spread for Future Growth and Recession: The Turkish Case," Working Papers 010, Bahcesehir University, Betam, revised Mar 2013.
    3. Bruno, Giancarlo, 2009. "Non-linear relation between industrial production and business surveys data," MPRA Paper 42337, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:23:y:2004:i:5:p:373-384. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.