IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/200027.html
   My bibliography  Save this paper

This is what the US leading indicators lead

Author

Listed:
  • Camacho, Maximo
  • Pérez Quirós, Gabriel

Abstract

We propose an optimal filter to transform the Conference Board Composite Leading Index (CLI) into recession probabilities in the US economy. We also analyze the CLI's accuracy at anticipating US output growth. We compare the predictive performance of linear, VAR extensions of smooth transition regression and switching regimes, probit, nonparametric models and conclude that a combination of the switching regimes and nonparametric forecasts is the best strategy at predicting both the NBER business cycle schedule and GDP growth. This confirms the usefulness of CLI, even in a real-time analysis. JEL Classification: C32, C53

Suggested Citation

  • Camacho, Maximo & Pérez Quirós, Gabriel, 2000. "This is what the US leading indicators lead," Working Paper Series 27, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:200027
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp027.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    2. Wecker, William E, 1979. "Predicting the Turning Points of a Time Series," The Journal of Business, University of Chicago Press, vol. 52(1), pages 35-50, January.
    3. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    4. Clive W. Granger & Timo Terasvirta & Heather M. Anderson, 1993. "Modeling Nonlinearity over the Business Cycle," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 311-326, National Bureau of Economic Research, Inc.
    5. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    6. Birchenhall, Chris R & Osborn, Denise R & Sensier, Marianne, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    7. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-428, October.
    10. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    11. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
    12. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    13. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Andrew J. Filardo, 1999. "How reliable are recession prediction models?," Economic Review, Federal Reserve Bank of Kansas City, issue qii, pages 35-55.
    16. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    17. Birchenhall, Chris R, et al, 1999. "Predicting U.S. Business-Cycle Regimes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 313-323, July.
    18. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Leading indicators; optimal forecasting rule; turning points;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:200027. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications). General contact details of provider: http://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.