IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0202.html
   My bibliography  Save this paper

This is What Leading Indicators Lead

Author

Listed:
  • Maximo Cosme Camacho Alonso

    (Universidad de Murcia)

  • Gabriel Perez-Quiros

    (European Central Bank)

Abstract

The purpose of this paper is two-fold. First, we compare the accuracy of previous studies that analyze the ability of the Composite Index of Leading Indicators (CLI) for predicting turning points. Alternative filters are also proposed. For these comparisons, we adapt the test developed by Diebold and Mariano (1995) to the business cycles framework. Second, we combine different approaches to produce a filter that transforms the monthly CLI growth figures into a more intuitive measure of the probability of recession. We examine the predictive power of the CLI for movements in GDP. For the first objective, we analyze the accuracy of the following models: First, we generalize the analysis of Hamilton and Perez-Quiros (1996) describing how linear univariate and bivariate models can be used to forecast nonlinear phenomena such as turning points. We update their study of multivariate Markov switching models. Second, we extend the Smooth Transition Regression methodology to a VAR context. We identify the transition function as the filter that shows the probability of locating the economy between the different states. Third, we analyze an expansion of the probit model suggested in Estrella and Mishkin (1998). Finally, we propose a new methodology based upon adaptive kernel estimation for predicting recessions nonparametrically. Despite the good in-sample performance of the switching regimes model, we conclude that a simple linear univariate model for GDP is more accurate than any bivariate specification in real-time. For the second objective, we suggest that a combination of the forecasts may exploit more leading information from the CLI than any of the individual forecasting models. Combining forecasts of growth, we apply the rule proposed by Granger and Ramanathan (1984). Combining forecasts of recessions, we use a method in the spirit of Li and Dorfman (1996). We prove that a combination of the switching regimes (the best within recessions) and the nonparametic (the best within expansions) is as good as a combination of all the models. The out-of-sample results indicate that the real-time combination presents the most accurate statistical forecast of both GDP growth and recessions. Thus, we conclude that the CLI is useful in anticipating both turning points and output growth. In addition, in contrast to Hess and Iwata (1997), we find that nonlinear specifications perform better than simpler linear models at reproducing the business cycles features of real GDP. An illustration of the operation of this filter shows that the same CLI growth rate contains very different information about the probability of an imminent recession depending on the period considered.

Suggested Citation

  • Maximo Cosme Camacho Alonso & Gabriel Perez-Quiros, 2000. "This is What Leading Indicators Lead," Econometric Society World Congress 2000 Contributed Papers 0202, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0202
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0202a.pdf
    File Function: main text
    Download Restriction: no

    File URL: http://fmwww.bc.edu/RePEc/es2000/0202b.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clive W. Granger & Timo Terasvirta & Heather M. Anderson, 1993. "Modeling Nonlinearity over the Business Cycle," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 311-326, National Bureau of Economic Research, Inc.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-428, October.
    6. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    7. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    8. Hess, Gregory D & Iwata, Shigeru, 1997. "Measuring and Comparing Business-Cycle Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 432-444, October.
    9. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    10. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    11. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    12. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    13. Wesley Clair Mitchell & Arthur F. Burns, 1938. "Statistical Indicators of Cyclical Revivals," NBER Books, National Bureau of Economic Research, Inc, number mitc38-1.
    14. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    15. Wecker, William E, 1979. "Predicting the Turning Points of a Time Series," The Journal of Business, University of Chicago Press, vol. 52(1), pages 35-50, January.
    16. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    17. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    18. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, March.
    19. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    20. Andrew J. Filardo, 1999. "How reliable are recession prediction models?," Economic Review, Federal Reserve Bank of Kansas City, vol. 84(Q II), pages 35-55.
    21. Birchenhall, Chris R, et al, 1999. "Predicting U.S. Business-Cycle Regimes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 313-323, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    2. Camacho, Maximo & Pérez Quirós, Gabriel, 2000. "This is what the US leading indicators lead," Working Paper Series 0027, European Central Bank.
    3. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    4. Francis X. Diebold & Glenn D. Rudebusch, 2001. "Five questions about business cycles," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    5. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
    6. E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
    7. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    8. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    9. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    10. Maximo Camacho, 2004. "Vector smooth transition regression models for US GDP and the composite index of leading indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 173-196.
    11. Lars-Erik Öller & Lasse Koskinen, 2004. "A classifying procedure for signalling turning points," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 197-214.
    12. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    13. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
    14. Gianluca Cubadda, 2007. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
    15. Sensier, Marianne & Artis, Michael & Osborn, Denise R. & Birchenhall, Chris, 2004. "Domestic and international influences on business cycle regimes in Europe," International Journal of Forecasting, Elsevier, vol. 20(2), pages 343-357.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Shyh-Wei Chen, 2006. "Enhanced reliability of the leading indicator in identifying turning points in Taiwan? an evaluation," Economics Bulletin, AccessEcon, vol. 5(10), pages 1-17.
    18. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    19. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    20. Chan Guk Huh, 1998. "Forecasting industrial production using models with business cycle asymmetry," Economic Review, Federal Reserve Bank of San Francisco, pages 29-41.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.