IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v29y2002i7p973-990.html
   My bibliography  Save this article

Monitoring cyclical processes. A non-parametric approach

Author

Listed:
  • E. Andersson

Abstract

Forecasting the turning points in business cycles is important to economic and political decisions. Time series of business indicators often exhibit cycles that cannot easily be modelled with a parametric function. This article presents a method for monitoring time-series with cycles in order to detect the turning points. A non-parametric estimation procedure that uses only monotonicity restrictions is used. The methodology of statistical surveillance is used for developing a system for early warnings of cycle turning points in monthly data. In monitoring, the inference situation is one of repeated decisions. Measurements of the performance of a method of surveillance are, for example, average run length and expected delay to a correct alarm. The properties of the proposed monitoring system are evaluated by means of a simulation study. The false alarms are controlled by a fixed median run length to the first false alarm. Results are given on the median delay time to a correct alarm for two situations: a peak after two and three years respectively .

Suggested Citation

  • E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
  • Handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:973-990
    DOI: 10.1080/0266476022000006685
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476022000006685
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476022000006685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, David T & Dorfman, Jeffrey H, 1996. "Predicting Turning Points through the Integration of Multiple Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 421-428, October.
    2. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    3. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    4. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    5. Diebold, Francis X & Rudebusch, Glenn D, 1989. "Scoring the Leading Indicators," The Journal of Business, University of Chicago Press, vol. 62(3), pages 369-391, July.
    6. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    7. Koskinen, Lasse & Öller, Lars-Erik, 1998. "A Hidden Markov Model as a Dynamic Bayesian Classifier, With an Application to Forecasting Business-Cycle Turning Points," Working Papers 59, National Institute of Economic Research.
    8. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1.
    9. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, August.
    10. Zarnowitz, Victor & Moore, Geoffrey H, 1982. "Sequential Signals of Recession and Recovery," The Journal of Business, University of Chicago Press, vol. 55(1), pages 57-85, January.
    11. Layton, Allan P., 1996. "Dating and predicting phase changes in the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 12(3), pages 417-428, September.
    12. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    13. James H. Stock & Mark W. Watson, 1993. "A Procedure for Predicting Recessions with Leading Indicators: Econometric Issues and Recent Experience," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 95-156, National Bureau of Economic Research, Inc.
    14. Arteaga, Carmen & Ledolter, Johannes, 1997. "Control charts based on order-restricted tests," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 1-10, February.
    15. Birchenhall, Chris R, et al, 1999. "Predicting U.S. Business-Cycle Regimes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 313-323, July.
    16. Neftici, Salih N., 1982. "Optimal prediction of cyclical downturns," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 225-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yushu, 2013. "Wavelet based outlier correction for power controlled turning point detection in surveillance systems," Economic Modelling, Elsevier, vol. 30(C), pages 317-321.
    2. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    3. Christian Sonesson, 2003. "Evaluations of some Exponentially Weighted Moving Average methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1115-1133.
    4. Michael Berlemann & Julia Freese & Sven Knoth, 2012. "Eyes Wide Shut? The U.S. House Market Bubble through the Lense of Statistical Process Control," CESifo Working Paper Series 3962, CESifo.
    5. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    6. Marianne Frisen & Eva Andersson & Linus Schioler, 2010. "Evaluation of multivariate surveillance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2089-2100.
    7. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    9. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Frisén, Marianne & Andersson, Eva, 2008. "Semiparametric surveillance of outbreaks," Research Reports 2007:11, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    12. Andersson, E., 2005. "On-line detection of turning points using non-parametric surveillance: The effect of the growth after the turn," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 433-439, July.
    13. Frisén, Marianne & Andersson, Eva & Pettersson, Kjell, 2008. "Semiparametric estimation of outbreak regression," Research Reports 2007:13, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    14. David Bock, 2008. "Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 213-227.
    15. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    16. David Bock & Eva Andersson & Marianne Frisén, 2005. "Statistical surveillance of cyclical processes with application to turns in business cycles," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 465-490.
    17. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    2. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    3. Carriero, Andrea & Marcellino, Massimiliano, 2007. "A comparison of methods for the construction of composite coincident and leading indexes for the UK," International Journal of Forecasting, Elsevier, vol. 23(2), pages 219-236.
    4. Maximo Camacho & Gabriel Perez-Quiros, 2002. "This is what the leading indicators lead," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(1), pages 61-80.
    5. Chris Birchenhall & Denise Osborn & Marianne Sensier, 2001. "Predicting UK Business Cycle Regimes," Scottish Journal of Political Economy, Scottish Economic Society, vol. 48(2), pages 179-195, May.
    6. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    7. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    8. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    9. Issler, Joao Victor & Vahid, Farshid, 2006. "The missing link: using the NBER recession indicator to construct coincident and leading indices of economic activity," Journal of Econometrics, Elsevier, vol. 132(1), pages 281-303, May.
    10. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    11. Duo Qin, 2010. "Econometric Studies of Business Cycles in the History of Econometrics," Working Papers 669, Queen Mary University of London, School of Economics and Finance.
    12. David Bock & Eva Andersson & Marianne Frisén, 2005. "Statistical surveillance of cyclical processes with application to turns in business cycles," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 465-490.
    13. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    14. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    15. Christopher L. Gilbert & Duo Qin, 2007. "Representation in Econometrics: A Historical Perspective," Working Papers 583, Queen Mary University of London, School of Economics and Finance.
    16. Grace Lee, 2011. "Aggregate shocks decomposition for eight East Asian countries," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
    17. Thomas M. FULLERTON & Macie Z. SUBIA, 2017. "Metropolitan Business Cycle Analysis for Lubbock," Journal of Economics and Political Economy, KSP Journals, vol. 4(1), pages 33-52, March.
    18. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:973-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.