IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2012_012.html
   My bibliography  Save this paper

Wavelet Based Outlier Correction for Power Controlled Turning Point Detection in Surveillance Systems

Author

Listed:
  • Li, Yushu

    () (Department of Economics, Lund University)

Abstract

Detection turning points in unimodel has various applications to time series which have cyclic periods. Related techniques are widely explored in the field of statistical surveillance, that is, on-line turning point detection procedures. This paper will first present a power controlled turning point detection method based on the theory of the likelihood ratio test in statistical surveillance. Next we show how outliers will influence the performance of this methodology. Due to the sensitivity of the surveillance system to outliers, we finally present a wavelet multiresolution (MRA) based outlier elimination approach, which can be combined with the on-line turning point detection process and will then alleviate the false alarm problem introduced by the outliers.

Suggested Citation

  • Li, Yushu, 2012. "Wavelet Based Outlier Correction for Power Controlled Turning Point Detection in Surveillance Systems," Working Papers 2012:12, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2012_012
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/papers/WP12_12.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    2. E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
    3. Ling, Shiqing & Li, W.K., 2003. "Asymptotic Inference For Unit Root Processes With Garch(1,1) Errors," Econometric Theory, Cambridge University Press, vol. 19(4), pages 541-564, August.
    4. Veiga, Helena & Grané, Aurea, 2009. "Wavelet-based detection of outliers in volatility models," DES - Working Papers. Statistics and Econometrics. WS ws090403, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. David Bock & Eva Andersson & Marianne Frisén, 2005. "Statistical surveillance of cyclical processes with application to turns in business cycles," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 465-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjørn Gunnar Hansen & Yushu Li, 2017. "An Analysis of Past World Market Prices of Feed and Milk and Predictions for the Future," Agribusiness, John Wiley & Sons, Ltd., vol. 33(2), pages 175-193, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    2. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Vasyl Golosnoy & Jens Hogrefe, 2013. "Signaling NBER turning points: a sequential approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 438-448, February.
    6. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    7. David Bock, 2008. "Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 213-227.
    8. Sergey V. Smirnov & Nikolay V. Kondrashov & Anna V. Petronevich, 2017. "Dating Cyclical Turning Points for Russia: Formal Methods and Informal Choices," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 13(1), pages 53-73, May.
    9. Westerlund, Joakim, 2014. "On the choice of test for a unit root when the errors are conditionally heteroskedastic," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 40-53.
    10. Nikolaos Kourogenis & Nikitas Pittis, 2008. "Testing for a unit root under errors with just barely infinite variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 1066-1087, November.
    11. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    12. Neil Kellard & Denise Osborn & Jerry Coakley & Christian Conrad & Menelaos Karanasos, 2015. "On the Transmission of Memory in Garch-in-Mean Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(5), pages 706-720, September.
    13. Francq, Christian & Makarova, Svetlana & Zakoi[diaeresis]an, Jean-Michel, 2008. "A class of stochastic unit-root bilinear processes: Mixing properties and unit-root test," Journal of Econometrics, Elsevier, vol. 142(1), pages 312-326, January.
    14. Zhou, Qin & Luo, Yunzhao & Wang, Zhaojun, 2010. "A control chart based on likelihood ratio test for detecting patterned mean and variance shifts," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1634-1645, June.
    15. Paulo Rodrigues & Antonio Rubia, 2008. "A note on testing for nonstationarity in autoregressive processes with level dependent conditional heteroskedasticity," Statistical Papers, Springer, vol. 49(3), pages 581-593, July.
    16. Chor-yiu SIN, 2004. "Estimation and Testing for Partially Nonstationary Vector Autoregressive Models with GARCH: WLS versus QMLE," Econometric Society 2004 Australasian Meetings 92, Econometric Society.
    17. Wang, Gaowen, 2006. "A note on unit root tests with heavy-tailed GARCH errors," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1075-1079, May.
    18. Li, Yushu & Reese, Simon, 2012. "Wavelet Improvement in Turning Point Detection using a Hidden Markov Model," Working Papers 2012:14, Lund University, Department of Economics, revised 05 Apr 2014.
    19. Joakim Westerlund, 2013. "A computationally convenient unit root test with covariates, conditional heteroskedasticity and efficient detrending," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 477-495, July.
    20. Li, Yushu & Shukur, Ghazi, 2009. "Testing for Unit Root against LSTAR Model: Wavelet Improvement under GARCH Distortion," CAFO Working Papers 2009:6, Linnaeus University, Centre for Labour Market Policy Research (CAFO), School of Business and Economics.

    More about this item

    Keywords

    Unimodel; Turning point; Statistical Surveillance; Outlier; Wavelet multiresolution; Threshold;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2012_012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.