IDEAS home Printed from
   My bibliography  Save this paper

Consequences of using the probability of a false alarm as the false alarm measure


  • Bock, David

    () (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)


In systems for on-line detection of regime shifts, a process is continually observed. Based on the data available an alarm is given when there is enough evidence of a change. There is a risk of a false alarm and here two different ways of controlling the false alarms are compared: a fixed average run length until the first false alarm and a fixed probability of any false alarm (fixed size). The two approaches are evaluated in terms of the timeliness of alarms. A system with a fixed size is found to have a drawback: the ability to detect a change deteriorates with the time of the change. Consequently, the probability of successful detection will tend to zero and the expected delay of a motivated alarm tends to infinity. This drawback is present even when the size is set to be very large (close to 1). Utility measures expressing the costs for a false or a too late alarm are used in the comparison. How the choice of the best approach can be guided by the parameters of the process and the different costs of alarms is demonstrated. The technique is illustrated by financial transactions of the Hang Seng Index.

Suggested Citation

  • Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2007_003

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Xia Pan, 2005. "An alternative approach to multivariate EWMA control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 695-705.
    2. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    3. E. Andersson, 2002. "Monitoring cyclical processes. A non-parametric approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 973-990.
    4. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21.
    5. Arthur Yeh & Dennis Lin & Honghong Zhou & Chandramouliswaran Venkataramani, 2003. "A multivariate exponentially weighted moving average control chart for monitoring process variability," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 507-536.
    6. Mu'azu Abujiya & Hassen Muttlak, 2004. "Quality Control Chart for the Mean using Double Ranked Set Sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1185-1201.
    7. A. F. B. Costa & M. A. Rahim, 2004. "Monitoring Process Mean and Variability with One Non-central Chi-square Chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(10), pages 1171-1183.
    8. Kurt Hornik & Friedrich Leisch & Christian Kleiber & Achim Zeileis, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121.
    9. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(06), pages 835-854, December.
    10. Zhang Wu & Yu Tian & Sheng Zhang, 2005. "Adjusted-loss-function charts with variable sample sizes and sampling intervals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(3), pages 221-242.
    11. Frédéric Carsoule & Philip Franses, 2003. "A note on monitoring time-varying parameters in an autoregression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 57(1), pages 51-62, February.
    12. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    13. A. A. Kalgonda & S. R. Kulkarni, 2004. "Multivariate Quality Control Chart for Autocorrelated Processes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(3), pages 317-327.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Monitoring; Surveillance; Repeated decisions; Moving average; Shewhart method;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2007_003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Linus Schiöler). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.