IDEAS home Printed from https://ideas.repec.org/p/hhs/gunsru/2007_007.html
   My bibliography  Save this paper

Predictions by early indicators of the time and height of yearly influenza outbreaks in Sweden

Author

Listed:
  • Andersson, Eva

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Kühlmann-Berenzon, Sharon

    (Department of Epidemiology, Swedish Institute for Infectious Disease Control, Stockholm Group for Epidemic Modelling)

  • Linde, Annika

    (Department of Epidemiology, Swedish Institute for Infectious Disease Control)

  • Schiöler, Linus

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Rubinova, Sandra

    (Department of Epidemiology, Swedish Institute for Infectious Disease Control)

  • Frisén, Marianne

    (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

Aims: Methods for prediction of the peak of the influenza from early observations are suggested. These predictions can be used for planning purposes. Methods: In this study, new robust methods are described and applied on weekly Swedish data on influenza-like illness (ILI) and weekly laboratory diagnoses of influenza (LDI). Both simple and advanced rules for how to predict the time and height of the peak of LDI are suggested. The predictions are made using covariates calculated from data in early LDI reports. The simple rules are based on the observed LDI values while the advanced ones are based on smoothing by unimodal regression. The suggested predictors were evaluated by cross-validation and by application to the observed seasons. Results: The relation between ILI and LDI was investigated and it was found that the ILI variable is not a good proxy for the LDI variable. The advanced prediction rule regarding the time of the peak of LDI had a median error of 0.9 weeks, and the advanced prediction rule for the height of the peak had a median deviation of 28%. Conclusions: The statistical methods for predictions have practical usefulness.

Suggested Citation

  • Andersson, Eva & Kühlmann-Berenzon, Sharon & Linde, Annika & Schiöler, Linus & Rubinova, Sandra & Frisén, Marianne, 2007. "Predictions by early indicators of the time and height of yearly influenza outbreaks in Sweden," Research Reports 2007:7, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2007_007
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/8475
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frisén, Marianne, 2007. "Principles for Multivariate Surveillance," Research Reports 2007:4, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    2. Andersson, Eva & Bock, David & Frisén, Marianne, 2007. "Modeling influenza incidence for the purpose of on-line monitoring," Research Reports 2007:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. S. Hussain & R. Harrison & J. Ayres & S. Walter & J. Hawker & R. Wilson & G. Shukur, 2005. "Estimation and forecasting hospital admissions due to Influenza: Planning for winter pressure. The case of the West Midlands, UK," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(3), pages 191-205.
    4. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    6. Andersson, Eva, 2007. "Effect of dependency in systems for multivariate surveillance," Research Reports 2007:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    7. Frisén, Marianne, 2007. "Optimal Sequential Surveillance for Finance, Public Health, and Other Areas," Research Reports 2007:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    2. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Bock, David, 2007. "Evaluations of likelihood based surveillance of volatility," Research Reports 2007:9, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Andersson, Eva & Bock, David & Frisén, Marianne, 2007. "Modeling influenza incidence for the purpose of on-line monitoring," Research Reports 2007:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Statistical Surveillance of Epidemics: Peak Detection of Influenza in Sweden," Research Reports 2007:6, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    6. Andersson, Eva, 2008. "Hotelling´s T2 Method in Multivariate On-line Surveillance. On the Delay of an Alarm," Research Reports 2008:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    7. Schiöler, Linus & Frisén, Marianne, 2008. "On statistical surveillance of the performance of fund managers," Research Reports 2008:4, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    9. Schiöler, Linus, 2009. "Explorative analysis of spatial patterns of influenza incidences in Sweden 1999—2008," Research Reports 2008:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Frisén, Marianne & Andersson, Eva, 2008. "Semiparametric surveillance of outbreaks," Research Reports 2007:11, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Pettersson, Kjell, 2008. "Unimodal regression in the two-parameter exponential family with constant or known dispersion parameter," Research Reports 2007:14, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    12. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    13. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    14. Linying Yang & Teng Zhang & Peter Glynn & David Scheinker, 2021. "The development and deployment of a model for hospital-level COVID-19 associated patient demand intervals from consistent estimators (DICE)," Health Care Management Science, Springer, vol. 24(2), pages 375-401, June.
    15. Verdier, Ghislain & Hilgert, Nadine & Vila, Jean-Pierre, 2008. "Adaptive threshold computation for CUSUM-type procedures in change detection and isolation problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4161-4174, May.
    16. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    17. Schiöler, Linus, 2010. "Modelling the spatial patterns of influenza incidence in Sweden," Research Reports 2010:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    18. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    More about this item

    Keywords

    Prediction; Influenza; Outbreak;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2007_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Linus Schiöler (email available below). General contact details of provider: http://www.statistics.gu.se/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.