IDEAS home Printed from https://ideas.repec.org/p/hhs/gunsru/2007_002.html
   My bibliography  Save this paper

Optimal Sequential Surveillance for Finance, Public Health, and Other Areas

Author

Listed:
  • Frisén, Marianne

    () (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

The aim of sequential surveillance is on-line detection of an important change in an underlying process as soon as possible after the change has occurred. Statistical methods suitable for surveillance differ from hypothesis testing methods. In addition, the criteria for optimality differ from those used in hypothesis testing. The need for sequential surveillance in industry, economics, medicine and for environmental purposes is described. Even though the methods have been developed under different scientific cultures, inferential similarities can be identified. Applications contain complexities such as autocorrelations, complex distributions, complex types of changes, and spatial as well as other multivariate settings. Approaches to handling these complexities are discussed. Expressing methods for surveillance through likelihood functions makes it possible to link the methods to various optimality criteria. This approach also facilitates the choice of an optimal surveillance method for each specific application and provides some directions for improving earlier suggested methods.

Suggested Citation

  • Frisén, Marianne, 2007. "Optimal Sequential Surveillance for Finance, Public Health, and Other Areas," Research Reports 2007:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2007_002
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Max Petzold & Christian Sonesson & Eva Bergman & Helle Kieler, 2004. "Surveillance in Longitudinal Models: Detection of Intrauterine Growth Restriction," Biometrics, The International Biometric Society, vol. 60(4), pages 1025-1033, December.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Lars-Erik Öller & Lasse Koskinen, 2004. "A classifying procedure for signalling turning points," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 197-214.
    4. Eva Andersson & David Bock & Marianne Frisén, 2004. "Detection of Turning Points in Business Cycles," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(1), pages 93-108.
    5. H. E. T. Holgersson, 2004. "Testing for Multivariate Autocorrelation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(4), pages 379-395.
    6. Sun, Kai & Basu, Asit P., 1995. "A characterization of a bivariate geometric distribution," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 307-311, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verdier, Ghislain & Hilgert, Nadine & Vila, Jean-Pierre, 2008. "Adaptive threshold computation for CUSUM-type procedures in change detection and isolation problems," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4161-4174, May.

    More about this item

    Keywords

    Change point; Likelihood ratio; Monitoring; Multivariate surveillance; Minimum expected delay; Online detection;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2007_002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Linus Schiöler). General contact details of provider: http://www.statistics.gu.se/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.