IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i2p223-242.html
   My bibliography  Save this article

Multivariate outbreak detection

Author

Listed:
  • Linus Schiöler
  • Marianne Fris�n

Abstract

Online monitoring is needed to detect outbreaks of diseases such as influenza. Surveillance is also needed for other kinds of outbreaks, in the sense of an increasing expected value after a constant period. Information on spatial location or other variables might be available and may be utilized. We adapted a robust method for outbreak detection to a multivariate case. The relation between the times of the onsets of the outbreaks at different locations (or some other variable) was used to determine the sufficient statistic for surveillance. The derived maximum-likelihood estimator of the outbreak regression was semi-parametric in the sense that the baseline and the slope were non-parametric while the distribution belonged to the one-parameter exponential family. The estimator was used in a generalized-likelihood ratio surveillance method. The method was evaluated with respect to robustness and efficiency in a simulation study and applied to spatial data for detection of influenza outbreaks in Sweden.

Suggested Citation

  • Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:2:p:223-242
    DOI: 10.1080/02664763.2011.584522
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.584522
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.584522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter A. Rogerson, 2001. "Monitoring point patterns for the development of space–time clusters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 87-96.
    2. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    3. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    4. Andersson, Eva & Bock, David & Frisén, Marianne, 2007. "Modeling influenza incidence for the purpose of on-line monitoring," Research Reports 2007:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    5. Zhou, Qin & Luo, Yunzhao & Wang, Zhaojun, 2010. "A control chart based on likelihood ratio test for detecting patterned mean and variance shifts," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1634-1645, June.
    6. Andrew Lawson & Allan Clark & Carmen Vidal Rodeiro, 2004. "Developments in General and Syndromic Surveillance for Small Area Health Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 951-966.
    7. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2007. "Robust outbreak surveillance of epidemics in Sweden," Research Reports 2007:12, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Marianne Frisen & Eva Andersson & Linus Schioler, 2010. "Evaluation of multivariate surveillance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2089-2100.
    9. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    10. Bersimis, Sotiris & Psarakis, Stelios & Panaretos, John, 2006. "Multivariate Statistical Process Control Charts: An Overview," MPRA Paper 6399, University Library of Munich, Germany.
    11. Höhle, Michael & Paul, Michaela, 2008. "Count data regression charts for the monitoring of surveillance time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4357-4368, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    2. Schiöler, Linus, 2010. "Modelling the spatial patterns of influenza incidence in Sweden," Research Reports 2010:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    3. Frisén, Marianne & Andersson, Eva, 2008. "Semiparametric surveillance of outbreaks," Research Reports 2007:11, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    4. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    5. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    6. Schiöler, Linus, 2009. "Explorative analysis of spatial patterns of influenza incidences in Sweden 1999—2008," Research Reports 2008:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    7. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    8. Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
    9. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    10. Bock, David & Andersson, Eva & Frisén, Marianne, 2007. "Similarities and differences between statistical surveillance and certain decision rules in finance," Research Reports 2007:8, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    11. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Frisén, Marianne, 2008. "Introduction to financial surveillance," Research Reports 2008:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    13. Jingnan Zhang & Yicheng Kang & Yang Yang & Peihua Qiu, 2015. "Statistical monitoring of the hand, foot and mouth disease in China," Biometrics, The International Biometric Society, vol. 71(3), pages 841-850, September.
    14. Pettersson, Kjell, 2008. "On curve estimation under order restrictions," Research Reports 2007:15, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    15. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2009. "Sufficient reduction in multivariate surveillance," Research Reports 2009:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    16. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    17. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    18. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.
    19. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    20. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:2:p:223-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.