IDEAS home Printed from https://ideas.repec.org/p/hhs/gunsru/2010_002.html
   My bibliography  Save this paper

Multivariate outbreak detection

Author

Listed:
  • Schiöler, Linus

    () (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

  • Frisén, Marianne

    () (Statistical Research Unit, Department of Economics, School of Business, Economics and Law, Göteborg University)

Abstract

On-line monitoring is needed to detect outbreaks of diseases like influenza. Surveillance is also needed for other kinds of outbreaks, in the sense of an increasing expected value after a constant period. Information on spatial location or other variables might be available and may be utilized. We adapted a robust method for outbreak detection to a multivariate case. The relation between the times of the onsets of the outbreaks at different locations (or some other variable) was used to determine the sufficient statistic for surveillance. The derived maximum likelihood estimator of the outbreak regression was semi-parametric in the sense that the baseline and the slope were non-parametric while the distribution belonged to the exponential family. The estimator was used in a generalized likelihood ratio surveillance method. The method was evaluated with respect to robustness and efficiency in a simulation study and applied to spatial data for detection of influenza outbreaks in Sweden.

Suggested Citation

  • Schiöler, Linus & Frisén, Marianne, 2010. "Multivariate outbreak detection," Research Reports 2010:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
  • Handle: RePEc:hhs:gunsru:2010_002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2077/23390
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21.
    2. Zhou, Qin & Luo, Yunzhao & Wang, Zhaojun, 2010. "A control chart based on likelihood ratio test for detecting patterned mean and variance shifts," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1634-1645, June.
    3. Marianne Frisen & Eva Andersson & Linus Schioler, 2010. "Evaluation of multivariate surveillance," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2089-2100.
    4. Peter A. Rogerson, 2001. "Monitoring point patterns for the development of space-time clusters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 87-96.
    5. Bersimis, Sotiris & Psarakis, Stelios & Panaretos, John, 2006. "Multivariate Statistical Process Control Charts: An Overview," MPRA Paper 6399, University Library of Munich, Germany.
    6. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    7. Andrew Lawson & Allan Clark & Carmen Vidal Rodeiro, 2004. "Developments in General and Syndromic Surveillance for Small Area Health Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 951-966.
    8. Höhle, Michael & Paul, Michaela, 2008. "Count data regression charts for the monitoring of surveillance time series," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4357-4368, May.
    9. Frisén, Marianne & Andersson, Eva & Schiöler, Linus, 2007. "Robust outbreak surveillance of epidemics in Sweden," Research Reports 2007:12, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Exponential family; Generalised likelihood; Ordered regression; Regional data; Surveillance;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunsru:2010_002. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Linus Schiöler). General contact details of provider: http://www.statistics.gu.se/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.