IDEAS home Printed from
   My bibliography  Save this article

Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance


  • Alexandre Rodrigues
  • Peter J. Diggle


In this article, we propose a method for conducting likelihood-based inference for a class of nonstationary spatiotemporal log-Gaussian Cox processes. The method uses convolution-based models to capture spatiotemporal correlation structure, is computationally feasible even for large datasets, and does not require knowledge of the underlying spatial intensity of the process. We describe an application to a surveillance system for detecting emergent spatiotemporal clusters of homicides in Belo Horizonte, Brazil, and discuss the advantages and drawbacks of our model-based approach by comparison with other spatiotemporal surveillance methods that have been proposed in the literature.

Suggested Citation

  • Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:93-101 DOI: 10.1080/01621459.2011.644496

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:93-101. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.