IDEAS home Printed from
   My bibliography  Save this paper

Nonparametric retrospection and monitoring of predictability of financial returns


  • Stanislav Anatolyev

    () (NES)


We develop and evaluate sequential testing tools for a class of nonparametric tests for predictability of financial returns that includes, in particular, the directional accuracy and excess profitability tests. We consider both the retrospective context where a researcher wants to track predictability over time in a historical sample, and the monitoring context where a researcher conducts testing as new observations arrive. Throughout, we elaborate on both two-sided and one-sided testing, focusing on linear monitoring boundaries that are continuations of horizontal lines corresponding to retrospective critical values. We illustrate our methodology by testing for directional and mean predictability of returns in a dozen of young stock markets in Eastern Europe.

Suggested Citation

  • Stanislav Anatolyev, 2006. "Nonparametric retrospection and monitoring of predictability of financial returns," Working Papers w0071, Center for Economic and Financial Research (CEFIR).
  • Handle: RePEc:cfr:cefirw:w0071

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    2. Inoue, Atsushi & Rossi, Barbara, 2005. "Recursive Predictability Tests for Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 336-345, July.
    3. repec:cup:etheor:v:11:y:1995:i:4:p:699-720 is not listed on IDEAS
    4. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    5. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    6. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    7. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 473-495.
    8. Rockinger, Michael & Urga, Giovanni, 2000. "The Evolution of Stock Markets in Transition Economies," Journal of Comparative Economics, Elsevier, vol. 28(3), pages 456-472, September.
    9. Rockinger, Michael & Urga, Giovanni, 2001. "A Time-Varying Parameter Model to Test for Predictability and Integration in the Stock Markets of Transition Economies," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 73-84, January.
    10. Mateus, Tiago, 2004. "The risk and predictability of equity returns of the EU accession countries," Emerging Markets Review, Elsevier, vol. 5(2), pages 241-266, June.
    11. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
    12. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    13. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    14. Zalewska-Mitura, Anna & Hall, Stephen G., 1999. "Examining the first stages of market performance: a test for evolving market efficiency," Economics Letters, Elsevier, vol. 64(1), pages 1-12, July.
    15. Elena Andreou & Eric Ghysels, 2004. "Monitoring for Disruptions in Financial Markets," CIRANO Working Papers 2004s-26, CIRANO.
    16. Kuan, Chung-Ming & Chen, Mei-Yuan, 1994. "Implementing the fluctuation and moving-estimates tests in dynamic econometric models," Economics Letters, Elsevier, vol. 44(3), pages 235-239.
    17. Kurt Hornik & Friedrich Leisch & Christian Kleiber & Achim Zeileis, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121.
    18. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(06), pages 835-854, December.
    19. Anatolyev, Stanislav & Gerko, Alexander, 2005. "A Trading Approach to Testing for Predictability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 455-461, October.
    20. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    21. Chu, Chia-Shang James & Hornik, Kurt & Kuan, Chung-Ming, 1995. "The Moving-Estimates Test for Parameter Stability," Econometric Theory, Cambridge University Press, vol. 11(04), pages 699-720, August.
    22. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Alenka Kavkler & Mejra Festić, 2011. "Modelling Stock Exchange Index Returns in Different GDP Growth Regimes," Prague Economic Papers, University of Economics, Prague, vol. 2011(1), pages 3-22.
    2. Kovačić, Zlatko, 2007. "Forecasting volatility: Evidence from the Macedonian stock exchange," MPRA Paper 5319, University Library of Munich, Germany.
    3. Kian-Ping Lim & Weiwei Luo & Jae H. Kim, 2013. "Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests," Applied Economics, Taylor & Francis Journals, vol. 45(8), pages 953-962, March.
    4. repec:bla:jtsera:v:38:y:2017:i:5:p:791-805 is not listed on IDEAS

    More about this item


    Testing; monitoring; predictability; stock returns;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfr:cefirw:w0071. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Babich). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.