IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A classifying procedure for signalling turning points

  • Lars-Erik Öller

    (Statistics Sweden, Stockholm, Sweden, and Stockholm University, Sweden)

  • Lasse Koskinen

    (Insurance Supervisory Authority, Helsinki, Finland)

A Hidden Markov Model (HMM) is used to classify an out-of-sample observation vector into either of two regimes. This leads to a procedure for making probability forecasts for changes of regimes in a time series, i.e. for turning points. Instead of estimating past turning points using maximum likelihood, the model is estimated with respect to known past regimes. This makes it possible to perform feature extraction and estimation for different forecasting horizons. The inference aspect is emphasized by including a penalty for a wrong decision in the cost function. The method, here called a 'Markov Bayesian Classifier (MBC)', is tested by forecasting turning points in the Swedish and US economies, using leading data. Clear and early turning point signals are obtained, contrasting favourably with earlier HMM studies. Some theoretical arguments for this are given. Copyright © 2004 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/for.905
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 23 (2004)
Issue (Month): 3 ()
Pages: 197-214

as
in new window

Handle: RePEc:jof:jforec:v:23:y:2004:i:3:p:197-214
Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Francis X. Diebold & Glenn D. Rudebusch, 1988. "A nonparametric investigation of duration dependence in the American business cycle," Working Paper Series / Economic Activity Section 90, Board of Governors of the Federal Reserve System (U.S.).
  2. GORDON, Stephen, 1995. "Stochastic Trends, Deterministic Trends and Business Cycle Turning Points," Cahiers de recherche 9503, Université Laval - Département d'économique.
  3. Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
  4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  5. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, June.
  6. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
  7. Artis, Michael J, 1993. "Turning Point Prediction for the UK using CSO Leading Indicators," CEPR Discussion Papers 833, C.E.P.R. Discussion Papers.
  8. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:23:y:2004:i:3:p:197-214. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.