IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v45y2014icp511-516.html
   My bibliography  Save this article

Persistence and cycles in historical oil price data

Author

Listed:
  • Gil-Alana, Luis A.
  • Gupta, Rangan

Abstract

This paper deals with the analysis of two observed features in historical oil price data; in particular, persistence and cyclicity. Using monthly data from September 1859 to October 2013, we observe that the series presents two peaks in the spectrum, one occurring at the long run or zero frequency and the other at a cyclical frequency. These features can be well described in terms of a long memory model that incorporates both peaks in the spectrum. It is found that the order of integration at the zero frequency is about 0.6, and the one at the cyclical frequency is substantially smaller (of about 0.3) with the length of the cycles being approximately of about 74 periods (months), which is consistent with the length suggested by the business cycle theory.

Suggested Citation

  • Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
  • Handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:511-516
    DOI: 10.1016/j.eneco.2014.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831400200X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eyal Dvir & Kenneth S. Rogoff, 2009. "Three Epochs of Oil," NBER Working Papers 14927, National Bureau of Economic Research, Inc.
    2. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    3. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2017. "Persistence and cycles in the us federal funds rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 1-8.
    4. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    5. Bierens, Herman J., 2001. "Complex Unit Roots And Business Cycles: Are They Real?," Econometric Theory, Cambridge University Press, vol. 17(5), pages 962-983, October.
    6. Berck, Peter & Roberts, Michael, 1996. "Natural Resource Prices: Will They Ever Turn Up?," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 65-78, July.
    7. Guglielmo Caporale & Luis Gil-Alana, 2016. "Persistence and cyclical dependence in the monthly euribor rate," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(1), pages 157-171, January.
    8. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2014. "Persistence and cycles in US hours worked," Economic Modelling, Elsevier, vol. 38(C), pages 504-511.
    9. Ray, Bonnie K & Tsay, Ruey S, 2000. "Long-Range Dependence in Daily Stock Volatilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 254-262, April.
    10. Hauser, Michael A & Kunst, Robert M, 1998. "Fractionally Integrated Models with ARCH Errors: With an Application to the Swiss One-Month Euromarket Interest Rate," Review of Quantitative Finance and Accounting, Springer, vol. 10(1), pages 95-113, January.
    11. Lee, Junsoo & List, John A. & Strazicich, Mark C., 2006. "Non-renewable resource prices: Deterministic or stochastic trends?," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 354-370, May.
    12. Ferrara, Laurent & Guegan, Dominique, 2001. "Forecasting with k-Factor Gegenbauer Processes: Theory and Applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(8), pages 581-601, December.
    13. Diebold, Francis X. & Rudebusch, Glenn D., 1991. "On the power of Dickey-Fuller tests against fractional alternatives," Economics Letters, Elsevier, vol. 35(2), pages 155-160, February.
    14. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
    15. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    16. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    17. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    18. Robert S. Pindyck, 1999. "The Long-Run Evolutions of Energy Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
    19. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    20. Hidalgo, Javier, 2005. "Semiparametric estimation for stationary processes whose spectra have an unknown pole," LSE Research Online Documents on Economics 6842, London School of Economics and Political Science, LSE Library.
    21. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    22. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," LSE Research Online Documents on Economics 6829, London School of Economics and Political Science, LSE Library.
    23. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    24. Giraitis, L & Hidalgo, J & Robinson, Peter M., 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 297, London School of Economics and Political Science, LSE Library.
    25. Haldrup, Niels & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2010. "A vector autoregressive model for electricity prices subject to long memory and regime switching," Energy Economics, Elsevier, vol. 32(5), pages 1044-1058, September.
    26. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    27. Josu Arteche & Peter M. Robinson, 2000. "Semiparametric Inference in Seasonal and Cyclical Long Memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 1-25, January.
    28. Luis Alberiko Gil-Alaña & Juan C. Cuestas, 2012. "A non-linear approach with long range dependence based on Chebyshev polynomials," NCID Working Papers 11/2012, Navarra Center for International Development, University of Navarra.
    29. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    30. Giraitis, Liudas & Hidalgo, Javier & Robinson, Peter, 2001. "Gaussian estimation of parametric spectral density with unknown pole," LSE Research Online Documents on Economics 2182, London School of Economics and Political Science, LSE Library.
    31. Erten, Bilge & Ocampo, José Antonio, 2013. "Super Cycles of Commodity Prices Since the Mid-Nineteenth Century," World Development, Elsevier, vol. 44(C), pages 14-30.
    32. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    33. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    34. Ahrens, W. Ashley & Sharma, Vijaya R., 1997. "Trends in Natural Resource Commodity Prices: Deterministic or Stochastic?," Journal of Environmental Economics and Management, Elsevier, vol. 33(1), pages 59-74, May.
    35. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    36. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    37. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    38. Dalla, Violetta & Hidalgo, Javier, 2005. "A parametric bootstrap test for cycles," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 219-261.
    39. Hassler, Uwe & Wolters, Jurgen, 1994. "On the power of unit root tests against fractional alternatives," Economics Letters, Elsevier, vol. 45(1), pages 1-5, May.
    40. Christiane Baumeister, 2014. "The Art and Science of Forecasting the Real Price of Oil," Bank of Canada Review, Bank of Canada, vol. 2014(Spring), pages 21-31.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis A. Gil-Alana & Christophe André & Rangan Gupta & Tsangyao Chang & Omid Ranjbar, 2016. "The Feldstein--Horioka puzzle in South Africa: A fractional cointegration approach," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 25(7), pages 978-991, October.
    2. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    3. Gil-Alana, Luis A. & Chang, Shinhye & Balcilar, Mehmet & Aye, Goodness C. & Gupta, Rangan, 2015. "Persistence of precious metal prices: A fractional integration approach with structural breaks," Resources Policy, Elsevier, vol. 44(C), pages 57-64.
    4. Jair N. Ojeda-Joya & Oscar Jaulin-Mendez & Juan C. Bustos-Peláez, 2019. "The Interdependence Between Commodity-Price and GDP Cycles: A Frequency-Domain Approach," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 47(3), pages 275-292, September.
    5. Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
    6. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    7. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    8. Moses Tule & Afees Salisu & Charles Chiemeke, 2020. "Improving Nigeria’s Inflation Forecast with Oil Price: The Role of Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 191-229, March.
    9. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, Open Access Journal, vol. 8(2), pages 1-26, April.
    10. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2016. "Modeling U.S. Historical Time-Series Prices and Inflation Using Various Linear and Nonlinear Long-Memory Approaches," Working Papers 201683, University of Pretoria, Department of Economics.
    11. Oloko, Tirimisiyu F. & Ogbonna, Ahamuefula E. & Adedeji, Abdulfatai A. & Lakhani, Noman, 2021. "Oil price shocks and inflation rate persistence: A Fractional Cointegration VAR approach," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 259-275.
    12. Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
    13. Bravo Caro, José Manuel & Golpe, Antonio A. & Iglesias, Jesús & Vides, José Carlos, 2020. "A new way of measuring the WTI – Brent spread. Globalization, shock persistence and common trends," Energy Economics, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2017. "Persistence and cycles in the us federal funds rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 1-8.
    3. Luis Alberiko Gil-Alaña & Borja Balprad & Guglielmo Maria Caporale, 2015. "African Growth, Non-Linearities and Strong Dependence: An Empirical Study," NCID Working Papers 12/2015, Navarra Center for International Development, University of Navarra.
    4. Luis A. Gil-Alana & Rangan Gupta & Fernando Perez de Gracia, 2016. "Persistence, mean reversion and non-linearities in the US housing prices over 1830--2013," Applied Economics, Taylor & Francis Journals, vol. 48(34), pages 3244-3252, July.
    5. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    6. Guglielmo Maria Caporale & Marinko Skare, 2014. "Long Memory in UK Real GDP, 1851-2013: An ARFIMA-FIGARCH Analysis," Discussion Papers of DIW Berlin 1395, DIW Berlin, German Institute for Economic Research.
    7. Guglielmo Caporale & Luis Gil-Alana, 2016. "Persistence and cyclical dependence in the monthly euribor rate," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 40(1), pages 157-171, January.
    8. Gil-Alana, Luis A. & Yaya, OlaOluwa S, 2018. "Testing Fractional Unit Roots with Non-linear Smooth Break Approximations using Fourier functions," MPRA Paper 90516, University Library of Munich, Germany.
    9. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.
    10. Nima Nonejad, 2019. "Modeling Persistence and Parameter Instability in Historical Crude Oil Price Data Using a Gibbs Sampling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1687-1710, April.
    11. Zaklan, Aleksandar & Abrell, Jan & Neumann, Anne, 2016. "Stationarity changes in long-run energy commodity prices," Energy Economics, Elsevier, vol. 59(C), pages 96-103.
    12. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "The Relationship between Prices and Output in the UK and the US," CESifo Working Paper Series 8970, CESifo.
    13. Guglielmo Maria Caporale & Luis A. Gil-Alana & Miguel Martin-Valmayor, 2020. "Non-Linearities and Persistence in US Long-Run Interest Rates," CESifo Working Paper Series 8744, CESifo.
    14. Aye, Goodness C. & Carcel, Hector & Gil-Alana, Luis A. & Gupta, Rangan, 2017. "Does gold act as a hedge against inflation in the UK? Evidence from a fractional cointegration approach over 1257 to 2016," Resources Policy, Elsevier, vol. 54(C), pages 53-57.
    15. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    16. Giorgio Canarella & Luis Gil-Alana & Rangan Gupta & Stephen M Miller, 2021. "Persistence and cyclical dynamics of US and UK house prices: Evidence from over 150 years of data," Urban Studies, Urban Studies Journal Limited, vol. 58(1), pages 53-72, January.
    17. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    18. Aleksandar Zaklan & Jan Abrell & Anne Neumann, 2011. "Stationarity Changes in Long-Run Fossil Resource Prices: Evidence from Persistence Break Testing," Discussion Papers of DIW Berlin 1152, DIW Berlin, German Institute for Economic Research.
    19. Yaya, OlaOluwa Simon & Gil-Alana, Luis Alberiko & Carcel, Hector, 2015. "Testing fractional persistence and non-linearities in the natural gas market: An application of non-linear deterministic terms based on Chebyshev polynomials in time," Energy Economics, Elsevier, vol. 52(PA), pages 240-245.
    20. Olushina O Awe & Robert Mudida & Luis A. Gil‐Alana, 2021. "Comparative analysis of economic growth in Nigeria and Kenya: A fractional integration approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1197-1205, January.

    More about this item

    Keywords

    Oil prices; Cycles; Persistence; Long memory;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:511-516. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.