IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/0197.html
   My bibliography  Save this paper

Complex Unit Roots and Business Cycles: Are They Real?

Author

Listed:
  • Herman J. Bierens

    (Pennsylvania State University)

Abstract

In this paper the asymptotic properties of ARMA processes with complex- conjugate unit roots in the AR lag polynomial are studied. These processes behave quite differently from processes with a single root equal to 1. In particular, the asymptotic properties of a standardized version of the periodogram for such processes are analyzed, and a nonparametric test of the complex unit root hypothesis against the stationarity hypothesis is derived. This test is applied to the annual change of the monthly number of unemployed in the US, in order to see whether this time series has complex unit roots in the business cycle frequencies.

Suggested Citation

  • Herman J. Bierens, 2000. "Complex Unit Roots and Business Cycles: Are They Real?," Econometric Society World Congress 2000 Contributed Papers 0197, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0197
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/0197.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Glenn D. Rudebusch, 1999. "Business Cycles: Durations, Dynamics, and Forecasting," Economics Books, Princeton University Press, edition 1, number 6636.
    2. Gregoir, St phane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part I," Econometric Theory, Cambridge University Press, vol. 15(04), pages 435-468, August.
    3. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0197. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.