IDEAS home Printed from https://ideas.repec.org/p/fth/cemfdt/9803.html

(Fractional) Beta Convergence

Author

Listed:
  • Michelacci, C.
  • Zaffaroni, P.

Abstract

Unit roots in output, an exponential 2% rate of convergence and no change in the underlying dynamics of output seem to be three stylized facts that can not go together. This paper extends the Solow-Swan growth model allowing for cross-sectional heterogeneity. In this framework, aggregate shocks might vanish at an hyperbolic rather than at an exponential rate. This implies that the level of output can exhibit long memory and that standard tests fail to reject the null of a unit root despite mean reversion. Exploiting secular time series properties of GDP, we conclude that traditional approaches to test for uniform (conditional and unconditional) convergence suit first step approximation. We show both theoretically and empirically how the uniform 2% rate of convergence repeatedly found in the empirical literature is the outcome of an underlying parameter of fractional integration strictly between 0.5 and 1. This is consistent with both time series and cross-sectional evidence recently produced.

Suggested Citation

  • Michelacci, C. & Zaffaroni, P., 1998. "(Fractional) Beta Convergence," Papers 9803, Centro de Estudios Monetarios Y Financieros-.
  • Handle: RePEc:fth:cemfdt:9803
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:cemfdt:9803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/cemfies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.