IDEAS home Printed from
   My bibliography  Save this article

Why Aggregate Long Memory Time Series?


  • Leonardo Rocha Souza


This article shows that, for large samples, temporally aggregating a true long memory time series (in order to get an improved estimator) may make little or no sense, as the practitioner can get virtually the same estimates as those from the aggregated series by choosing the appropriate bandwidths on the original one, provided some fairly general conditions apply. Besides, the practitioner has a wider choice of bandwidths than she has of aggregating levels. However, these results apply only to two specific and commonly used estimators, and do not apply to the aggregation procedure undertaken to compute the realized volatility. Also, aggregating a time series in order to test true versus spurious long memory (as in Ohanissian et al., 2008) is a relevant issue, particularly regarding stochastic and/or realized volatility, as many nonlinear processes display spurious long memory where the above result does not apply.

Suggested Citation

  • Leonardo Rocha Souza, 2008. "Why Aggregate Long Memory Time Series?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 298-316.
  • Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:298-316 DOI: 10.1080/07474930701873408

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Morten Orregaard Nielsen, 2005. "Semiparametric Estimation in Time-Series Regression with Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 279-304, March.
    2. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    3. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    4. da Silva, Afonso Gonçalves & Robinson, Peter M., 2008. "Fractional Cointegration In Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1207-1253, October.
    5. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(03), pages 299-336, June.
    6. Javier Hualde & Peter Robinson, 2006. "Semiparametric Estimation of Fractional Cointegration," Faculty Working Papers 07/06, School of Economics and Business Administration, University of Navarra.
    7. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    8. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    9. Chambers, Marcus J, 1998. "Long Memory and Aggregation in Macroeconomic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1053-1072, November.
    10. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    11. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
    13. Javier Hidalgo & Peter M. Robinson, 2002. "Adapting to Unknown Disturbance Autocorrelation in Regression with Long Memory," Econometrica, Econometric Society, vol. 70(4), pages 1545-1581, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:hal:journl:peer-00815563 is not listed on IDEAS
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2013. "Long memory and fractional integration in high frequency data on the US dollar/British pound spot exchange rate," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 1-9.
    3. Sun, Jingwei & Shi, Wendong, 2014. "Aggregation of the generalized fractional processes," Economics Letters, Elsevier, vol. 124(2), pages 258-262.
    4. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    5. Shi, Wendong & Sun, Jingwei, 2016. "Aggregation and long-memory: An analysis based on the discrete Fourier transform," Economic Modelling, Elsevier, vol. 53(C), pages 470-476.
    6. Pierre Perron & Wendong Shi, 2014. "Temporal Aggregation, Bandwidth Selection and Long Memory for Volatility Models," Boston University - Department of Economics - Working Papers Series wp2014-009, Boston University - Department of Economics.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:298-316. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.