IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

When Long Memory Meets the Kalman Filter: A Comparative Study

  • Stefano Grassi

    ()

    (Aarhus University and CREATES)

  • Paolo Santucci de Magistris

    ()

    (Aarhus University and CREATES)

The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic series. Two empirical applications highlight the practical usefulness of the proposed state space methods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_14.pdf
Download Restriction: no

Paper provided by Department of Economics and Business Economics, Aarhus University in its series CREATES Research Papers with number 2011-14.

as
in new window

Length: 43
Date of creation: 02 May 2011
Date of revision:
Handle: RePEc:aah:create:2011-14
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
  2. Bisaglia, Luisa & Guegan, Dominique, 1998. "A comparison of techniques of estimation in long-memory processes," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 61-81, March.
  3. Morten Ørregaard Nielsen & Per Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Working Papers 1189, Queen's University, Department of Economics.
  4. Iglesias, Pilar & Jorquera, Hector & Palma, Wilfredo, 2006. "Data analysis using regression models with missing observations and long-memory: an application study," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2028-2043, April.
  5. Sibbertsen, Philipp & Kruse, Robinson, 2007. "Testing for a break in persistence under long-range dependencies," Hannover Economic Papers (HEP) dp-381, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  6. Zaffaroni, Paolo, 2004. "Contemporaneous aggregation of linear dynamic models in large economies," Journal of Econometrics, Elsevier, vol. 120(1), pages 75-102, May.
  7. Laura Mayoral, 2005. "The Persistence of Inflation in OECD Countries:a Fractionally Integrated Approach," Working Papers 259, Barcelona Graduate School of Economics.
  8. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
  9. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  10. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  11. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  12. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  13. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(02), pages 501-540, April.
  14. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
  15. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  16. Haldrup, Niels & Nielsen, Morten Oe., . "Estimation of Fractional Integration in the Presence of Data Noise," Economics Working Papers 2003-10, Department of Economics and Business Economics, Aarhus University.
  17. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
  18. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  19. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
  20. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  21. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
  22. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  23. Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
  24. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, 07.
  25. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
  26. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
  27. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  28. Francis X. Diebold & Steven Husted & Mark Rush, 1990. "Real exchange rates under the gold standard," Discussion Paper / Institute for Empirical Macroeconomics 32, Federal Reserve Bank of Minneapolis.
  29. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona Graduate School of Economics.
  30. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
  31. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  32. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  33. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
  34. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  35. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.