IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

When Long Memory Meets the Kalman Filter: A Comparative Study

  • Stefano Grassi

    ()

    (Aarhus University and CREATES)

  • Paolo Santucci de Magistris

    ()

    (Aarhus University and CREATES)

The finite sample properties of the state space methods applied to long memory time series are analyzed through Monte Carlo simulations. The state space setup allows to introduce a novel modeling approach in the long memory framework, which directly tackles measurement errors and random level shifts. Missing values and several alternative sources of misspecification are also considered. It emerges that the state space methodology provides a valuable alternative for the estimation of the long memory models, under different data generating processes, which are common in financial and economic series. Two empirical applications highlight the practical usefulness of the proposed state space methods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_14.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2011-14.

as
in new window

Length: 43
Date of creation: 02 May 2011
Date of revision:
Handle: RePEc:aah:create:2011-14
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Haldrup, Niels & Nielsen, Morten Orregaard, 2007. "Estimation of fractional integration in the presence of data noise," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3100-3114, March.
  2. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
  3. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
  4. S. Bordignon & D. Raggi, 2010. "Long memory and nonlinearities in realized volatility: a Markov switching approach," Working Papers 694, Dipartimento Scienze Economiche, Universita' di Bologna.
  5. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  6. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(02), pages 501-540, April.
  7. Diebold, Francis X & Husted, Steven & Rush, Mark, 1991. "Real Exchange Rates under the Gold Standard," Journal of Political Economy, University of Chicago Press, vol. 99(6), pages 1252-71, December.
  8. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is what?: A simple time-domain test of long-memory vs. structural breaks," Economics Working Papers 954, Department of Economics and Business, Universitat Pompeu Fabra.
  9. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  10. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  11. Arteche González, Jesús María, 2005. "Semiparametric estimation in perturbed long memory series," BILTOKI 2005-02, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  12. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
  13. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
  14. Morten �rregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
  15. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  16. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  17. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
  18. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  19. Philipp Sibbertsen & Robinson Kruse, 2009. "Testing for a break in persistence under long-range dependencies," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 263-285, 05.
  20. Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
  21. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
  22. Bisaglia, Luisa & Guegan, Dominique, 1998. "A comparison of techniques of estimation in long-memory processes," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 61-81, March.
  23. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  24. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
  25. BAI, Jushan & PERRON, Pierre, 1998. "Computation and Analysis of Multiple Structural-Change Models," Cahiers de recherche 9807, Universite de Montreal, Departement de sciences economiques.
  26. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  27. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, EconWPA.
  28. Zaffaroni, Paolo, 2004. "Contemporaneous aggregation of linear dynamic models in large economies," Journal of Econometrics, Elsevier, vol. 120(1), pages 75-102, May.
  29. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
  30. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  31. Iglesias, Pilar & Jorquera, Hector & Palma, Wilfredo, 2006. "Data analysis using regression models with missing observations and long-memory: an application study," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2028-2043, April.
  32. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  33. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  34. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
  35. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-14. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.