IDEAS home Printed from https://ideas.repec.org/p/bos/wpaper/wp2011-050.html
   My bibliography  Save this paper

Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns

Author

Listed:
  • Pierre Perron

    () (Department of Economics, Boston University)

  • Rasmus T. Varneskov

    () (Department of Economics and Business, Aarhus University)

Abstract

We consider modeling and forecasting a variety of asset return volatility series by adding a random level shift component to the usual long-memory ARFIMA model. We propose a parametric state space model with an accompanying estimation and forecasting framework that combines long memory and level shifts by decomposing the underlying process into a simple mixture model and ARFIMA dynamics. The Kalman filter is used to construct the likelihood function after augmenting the probability of states by a mixture of normally distributed processes. The forecasts are constructed by exploiting the information in the Kalman recursions. The adequacy of the estimation methodology is shown through a simulation study. We apply our model to volatility series categorized in two groups: high frequency based series (tick-by-tick SPY trades and realized volatility on the S&P 500 and 30-year Treasury Bond futures) and longer spans of log-absolute daily returns (S&P 500 returns, Dollar-Aus and Dollar-Yen exchange rates). The full sample estimates show that level shifts are present in all series. A genuine long-memory component is present in measures of volatility constructed using high-frequency data. On the other hand, volatility series proxied by log daily absolute returns are characterized by a remaining short-memory component that is nearly uncorrelated once the level shifts are accounted for. We conduct extensive out-of-sample forecast evaluations and compare the results with four popular competing models. Interestingly, our ARFIMA model with random level shifts is the only model that consistently belongs to the 10% Model Con dence Set of Hansen et al. (2011) for both pairwise and joint comparisons. It does so for all series, forecasting periods, forecast horizons, forecast evaluation criteria and volatility measures. The gains in forecast accuracy can be very pronounced, especially at longer horizons.

Suggested Citation

  • Pierre Perron & Rasmus T. Varneskov, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2011-050, Boston University - Department of Economics.
  • Handle: RePEc:bos:wpaper:wp2011-050
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    2. Vasco J. Gabriel & Luis F. Martins, 2004. "On the forecasting ability of ARFIMA models when infrequent breaks occur," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 455-475, December.
    3. F. M. Bandi & J. R. Russell, 2008. "Microstructure Noise, Realized Variance, and Optimal Sampling," Review of Economic Studies, Oxford University Press, vol. 75(2), pages 339-369.
    4. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Zhongjun Qu & Pierre Perron, 2013. "A stochastic volatility model with random level shifts and its applications to S&P 500 and NASDAQ return indices," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 309-339, October.
    7. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    8. Morten Ørregaard Nielsen, 2015. "Asymptotics for the Conditional-Sum-of-Squares Estimator in Multivariate Fractional Time-Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 154-188, March.
    9. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    10. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    11. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    12. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    13. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    14. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    15. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    16. Martin, Vance L. & Wilkins, Nigel P., 1999. "Indirect estimation of ARFIMA and VARFIMA models," Journal of Econometrics, Elsevier, vol. 93(1), pages 149-175, November.
    17. Tatsuma Wada & Pierre Perron, 2006. "State Space Model with Mixtures of Normals: Specifications and Applications to International Data," Boston University - Department of Economics - Working Papers Series WP2006-029, Boston University - Department of Economics.
    18. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    19. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    21. Nunes, Luis C. & Newbold, Paul & Chung-Ming Kuan, 1996. "Spurious number of breaks," Economics Letters, Elsevier, vol. 50(2), pages 175-178, February.
    22. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
    23. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(06), pages 1196-1237, December.
    24. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    25. Iliyan GEORGIEV, 2002. "Functional Weak Limit Theory for Rare Outlying Events," Economics Working Papers ECO2002/22, European University Institute.
    26. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    27. Wen-Jen Tsay & Wolfgang Härdle, 2007. "A Generalized ARFIMA Process with Markov-Switching Fractional Differencing Parameter," SFB 649 Discussion Papers SFB649DP2007-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    28. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    29. Shin S. Ikeda, 2015. "Two-Scale Realized Kernels: A Univariate Case," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 13(1), pages 126-165.
    30. Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(04), pages 736-749, August.
    31. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    32. Varneskov, Rasmus & Voev, Valeri, 2013. "The role of realized ex-post covariance measures and dynamic model choice on the quality of covariance forecasts," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 83-95.
    33. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
    34. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    2. Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 0404. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
    3. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    4. repec:taf:applec:v:49:y:2017:i:26:p:2579-2589 is not listed on IDEAS
    5. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters,in: Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94 Edward Elgar Publishing.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2011-050. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Program Coordinator). General contact details of provider: http://edirc.repec.org/data/decbuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.