IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/7933.html
   My bibliography  Save this paper

The Distribution of Stock Return Volatility

Author

Listed:
  • Torben G. Andersen
  • Tim Bollerslev
  • Francis X. Diebold
  • Heiko Ebens

Abstract

We exploit direct model-free measures of daily equity return volatility and correlation obtained from high-frequency intraday transaction prices on individual stocks in the Dow Jones Industrial Average over a five-year period to confirm, solidify and extend existing characterizations of stock return volatility and correlation. We find that the unconditional distributions of the variances and covariances for all thirty stocks are leptokurtic and highly skewed to the right, while the logarithmic standard deviations and correlations all appear approximately Gaussian. Moreover, the distributions of the returns scaled by the realized standard deviations are also Gaussian. Consistent with our documentation of remarkably precise scaling laws under temporal aggregation, the realized logarithmic standard deviations and correlations all show strong temporal dependence and appear to be well described by long-memory processes. Positive returns have less impact on future variances and correlations than negative returns of the same absolute magnitude, although the economic importance of this asymmetry is minor. Finally, there is strong evidence that equity volatilities and correlations move together, possibly reducing the benefits to portfolio diversification when the market is most volatile. Our findings are broadly consistent with a latent volatility fact or structure, and they set the stage for improved high-dimensional volatility modeling and out-of-sample forecasting, which in turn hold promise for the development of better decision making in practical situations of risk management, portfolio allocation, and asset pricing.

Suggested Citation

  • Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Heiko Ebens, 2000. "The Distribution of Stock Return Volatility," NBER Working Papers 7933, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:7933 Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w7933.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    2. Young-Hye Cho & Robert F. Engle, 1999. "Time-Varying Betas and Asymmetric Effect of News: Empirical Analysis of Blue Chip Stocks," NBER Working Papers 7330, National Bureau of Economic Research, Inc.
    3. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    4. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Heiko Ebens, 2000. "The Distribution of Stock Return Volatility," NBER Working Papers 7933, National Bureau of Economic Research, Inc.
    6. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    7. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics,in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
    8. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    9. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    12. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    13. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    14. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    15. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    16. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    17. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    18. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    19. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    20. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:7933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.