Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns
Author
Abstract
Suggested Citation
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a for a similarly titled item that would be available.
Other versions of this item:
- Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
- Rasmus T. Varneskov & Pierre Perron, 2015. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series wp2015-015, Boston University - Department of Economics.
- Rasmus Tangsgaard Varneskov & Pierre Perron, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," CREATES Research Papers 2011-26, Department of Economics and Business Economics, Aarhus University.
- Pierre Perron & Rasmus T. Varneskov, 2011. "Combining Long Memory and Level Shifts in Modeling and Forecasting the Volatility of Asset Returns," Boston University - Department of Economics - Working Papers Series WP2011-050, Boston University - Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- is not listed on IDEAS
- Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
- Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018.
"A multivariate test against spurious long memory,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
- Sibbertsen, Philipp & Leschinski, Christian & Holzhausen, Marie, 2015. "A Multivariate Test Against Spurious Long Memory," Hannover Economic Papers (HEP) dp-547, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017.
"Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination,"
Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
- Bent Jesper Christensen & Rasmus T. Varneskov, 2015. "Medium Band Least Squares Estimation of Fractional Cointegration in the Presence of Low-Frequency Contamination," CREATES Research Papers 2015-25, Department of Economics and Business Economics, Aarhus University.
- Pierre Perron & Wendong Shi, 2020. "Temporal Aggregation and Long Memory for Asset Price Volatility," JRFM, MDPI, vol. 13(8), pages 1-18, August.
- Mohamed Shaker Ahmed & Elie Bouri, 2023. "Long memory and structural breaks of cryptocurrencies trading volume," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(3), pages 469-497, December.
- Less, Vivien & Sibbertsen, Philipp, 2022. "Estimation and Testing in a Perturbed Multivariate Long Memory Framework," Hannover Economic Papers (HEP) dp-704, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Alessio Brini & Giacomo Toscano, 2024. "SpotV2Net: Multivariate Intraday Spot Volatility Forecasting via Vol-of-Vol-Informed Graph Attention Networks," Papers 2401.06249, arXiv.org, revised Jan 2025.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Andersen, Torben G. & Varneskov, Rasmus T., 2022.
"Testing for parameter instability and structural change in persistent predictive regressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
- Luo, Deqing & Pang, Tao & Xu, Jiawen, 2021. "Forecasting U.S. Yield Curve Using the Dynamic Nelson–Siegel Model with Random Level Shift Parameters," Economic Modelling, Elsevier, vol. 94(C), pages 340-350.
- Ye Li & Pierre Perron & Jiawen Xu, 2017. "Modelling exchange rate volatility with random level shifts," Applied Economics, Taylor & Francis Journals, vol. 49(26), pages 2579-2589, June.
- Agie Wandala Putra & Jatna Supriatna & Raldi Hendro Koestoer & Tri Edhi Budhi Soesilo, 2021. "Differences in Local Rice Price Volatility, Climate, and Macroeconomic Determinants in the Indonesian Market," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
- Andersen, Torben G. & Varneskov, Rasmus T., 2021.
"Consistent inference for predictive regressions in persistent economic systems,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Consistent Inference for Predictive Regressions in Persistent Economic Systems," NBER Working Papers 28568, National Bureau of Economic Research, Inc.
- Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013.
"Unit roots, non-linearities and structural breaks,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94,
Edward Elgar Publishing.
- Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2012. "Unit roots, nonlinearities and structural breaks," CREATES Research Papers 2012-14, Department of Economics and Business Economics, Aarhus University.
- Davide Delle Monache & Stefano Grassi & Paolo Santucci de Magistris, 2017. "Does the ARFIMA really shift?," CREATES Research Papers 2017-16, Department of Economics and Business Economics, Aarhus University.
- Jiawen Xu & Pierre Perron, 2024.
"Forecasting in the presence of in-sample and out-of-sample breaks,"
Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 545-579,
Springer.
- Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
- Kruse, Robinson, 2015. "A modified test against spurious long memory," Economics Letters, Elsevier, vol. 135(C), pages 34-38.
- Chen, Xiaoyi & Feng, JianFen & Wang, Tianyi, 2023. "Pricing VIX futures: A framework with random level shifts," Finance Research Letters, Elsevier, vol. 52(C).
- Gabriel Rodríguez & Junior A. Ojeda Cunya & José Carlos Gonzáles Tanaka, 2019. "An empirical note about estimation and forecasting Latin American Forex returns volatility: the role of long memory and random level shifts components," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 18(2), pages 107-123, June.
- Jiawen Xu & Pierre Perron, 2015.
"Forecasting in the presence of in and out of sample breaks,"
Boston University - Department of Economics - Working Papers Series
wp2015-012, Boston University - Department of Economics.
- Jiawen Xu & Pierre Perron, 2017. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series WP2018-014, Boston University - Department of Economics, revised Nov 2018.
- Mauricio Zevallos, 2019. "A Note on Forecasting Daily Peruvian Stock Market VolatilityRisk Using Intraday Returns," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(84), pages 94-101.
More about this item
Keywords
; ; ; ; ; ;JEL classification:
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bos:wpaper:wp2017-005. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Program Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/decbuus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/bos/wpaper/wp2017-005.html