IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

An Empirical Application of a Random Level Shifts Model with Time-Varying Probability and Mean Reversion to the Volatility of Latin-American Forex Markets Returns [Una aplicación empírica de un modelo de cambios de nivel aleatorios con probabilidades cambiantes y reversión a la media a la volatilidad de los retornos cambiarios en América Latina]

Listed author(s):
  • Gabriel Rodríguez

    ( Departamento de Economía de la PUCP del Perú)

  • José Carlos Gonzáles Tanaka

Following Xu and Perron (2014), this paper uses daily data for six Forex Latin American markets. Four models of the family of the Random Level Shift (RLS) model are estimated: a basic model where probabilities of level shift are driven by a Bernouilli variable but probability is constant; a model where varying probabilities are allowed and introduced via past extreme returns; a model with mean reversion mechanism; and a model incorporating these two features. Our results prove three striking features: first, the four RLS models fit well the data, with almost all the estimates highly significant; second, the long memory property disappears completely from the ACF, including the GARCH effects; and third, the forecasting performance is much better for the RLS models against an overall of four competitor models: GARCH, FIGARCH and two ARFIMA models. [Siguiendo el trabajo de Xu y Perron (2014), este documento utiliza datos diarios de volatilidades de retornos cambiarios para seis mercados de América Latina. Cuatro modelos del tipo Random Level Shifts (RLS) son estimados: un modelo básico donde las probabilidades de cambios de nivel son gobernadas por una variable del tipo Bernouilli pero dicha probabilidad es constante; un modelo donde las probabilidades son cambiantes en el tiempo y dependen de los retornos bursátiles extremos negativos del periodo anterior; un modelo con reversión a la media; y un modelo que incorpora los dos aspectos mencionados anteriormente. Los resultados sugieren tres importantes aspectos: el primero es que los cuatro modelos RLS ajustan bien los datos con prácticamente todos los estimados altamente significativos; segundo, la característica de larga memoria desaparece completamente de la ACF, incluyendo los efectos GARCH; y, tercero, la performance de los cuatro modelos en términos de predicción es buena contra diferentes modelos rivales como los modelos GARCH, FIGARCH, y dos modelos ARFIMA.]

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Departamento de Economía - Pontificia Universidad Católica del Perú in its series Documentos de Trabajo / Working Papers with number 2016-415.

in new window

Length: 48 pages
Date of creation: 2016
Publication status: published
Handle: RePEc:pcp:pucwps:wp00415
Contact details of provider: Postal:
Av. Universitaria 1801, San Miguel, Lima, Perú

Phone: (511) 626-2000 ext. 4950, 4951
Fax: (511) 626-2874
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Mario Tello, 2015. "Cerrando brechas de genero en el campo. Limitantes de la productividad laboral de mujeres emprendedoras agropecuarias en el Perú: un análisis regional, 2012," Libros PUCP / PUCP Books, Fondo Editorial de la Pontificia Universidad Católica del Perú, edition 1, number lde-2015-04, July.
  2. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
  3. Alberto Humala, 2013. "Some stylized facts of return in the foreign exchange and stock markets in Peru," Studies in Economics and Finance, Emerald Group Publishing, vol. 30(2), pages 139-158, May.
  4. Carlos Contreras, 2015. "El aprendizaje de la libertad: historia del Perú en el siglo de su independencia," Libros PUCP / PUCP Books, Fondo Editorial de la Pontificia Universidad Católica del Perú, edition 1, number lde-2015-03, July.
  5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  6. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
  7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  8. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  9. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  10. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
  11. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  12. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
  13. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
  14. Waldo Mendoza, 2015. "Macroeconomía intermedia para América Latina," Libros PUCP / PUCP Books, Fondo Editorial de la Pontificia Universidad Católica del Perú, edition 2, number lde-2015-01, July.
  15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
  16. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
  17. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
  18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  19. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  20. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
  21. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
  22. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  23. Carlos Contreras & Waldo Mendoza & Sinesio López & Cristina Mazzeo & José Incio, 2015. "La desigualdad de la distribución de ingresos en el Perú. Orígenes históricos y dinámica política y económica," Libros PUCP / PUCP Books, Fondo Editorial de la Pontificia Universidad Católica del Perú, edition 1, number lde-2015-06, July.
  24. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pcp:pucwps:wp00415. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.