IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v7y2004i2p455-475.html
   My bibliography  Save this article

On the forecasting ability of ARFIMA models when infrequent breaks occur

Author

Listed:
  • Vasco J. Gabriel
  • Luis F. Martins

Abstract

Recent research has focused on the links between long memory and structural breaks, stressing the memory properties that may arise in models with parameter changes. In this paper, we question the implications of this result for forecasting. We contribute to this research by comparing the forecasting abilities of long memory and Markov switching models. Two approaches are employed: the Monte Carlo study and an empirical comparison, using the quarterly Consumer Price inflation rate in Portugal in the period 1968--1998. Although long memory models may capture some in-sample features of the data, we find that their forecasting performance is relatively poor when shifts occur in the series, compared to simple linear and Markov switching models. Copyright Royal Economic Socciety 2004

Suggested Citation

  • Vasco J. Gabriel & Luis F. Martins, 2004. "On the forecasting ability of ARFIMA models when infrequent breaks occur," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 455-475, December.
  • Handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:455-475
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasco Gabriel & Luis Martins, 2011. "Cointegration tests under multiple regime shifts: An application to the stock price–dividend relationship," Empirical Economics, Springer, vol. 41(3), pages 639-662, December.
    2. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
    3. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    4. José M. Belbute & Alfredo Marvão Pereira, 2016. "Updated Reference Forecasts for Global CO2 Emissions from Fossil-Fuel Consumption," Working Papers 170, Department of Economics, College of William and Mary.
    5. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    6. Gabriel Rodríguez, 2016. "Modeling Latin-American Stock and Forex Markets Volatility: Empirical Application of a Model with Random Level Shifts and Genuine Long Memory [Modelando la volatilidad de los mercados bursátiles y cam," Documentos de Trabajo / Working Papers 2016-416, Departamento de Economía - Pontificia Universidad Católica del Perú.
    7. Bisaglia, Luisa & Gerolimetto, Margherita, 2008. "Forecasting long memory time series when occasional breaks occur," Economics Letters, Elsevier, vol. 98(3), pages 253-258, March.
    8. Augustine Arize & John Malindretos & Kiseok Nam, 2005. "Inflation and Structural Change in 50 Developing Countries," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 33(4), pages 461-471, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:2:p:455-475. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.