IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v170y2025ics0165188924001970.html
   My bibliography  Save this article

Judgment can spur long memory

Author

Listed:
  • Zanetti Chini, Emilio

Abstract

We arrive at this conclusion by using a new family of models—the Long Memory Dynamic Judgmental Protocol (LMDJP)—where robust filtering and fractionally integrated auto-regressions are combined in an environment characterized by several players—namely, Forecast Producer, Forecast User, and Reality. Namely, we show that if judgment is parametrized as a deformation Likelihood function according to Lq-Likelihood methods, such a deformation affects (sometimes dramatically) the Power Spectrum, consequently inducing over-rejection in formal tests for no LM-effects based on the last. Our simulated and empirical evidence reveals that knowledge of the fractional integration parameter matters for the p-values of tests for spurious LM and, secondly, that the role of LM in belief formation is ambiguous.

Suggested Citation

  • Zanetti Chini, Emilio, 2025. "Judgment can spur long memory," Journal of Economic Dynamics and Control, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:dyncon:v:170:y:2025:i:c:s0165188924001970
    DOI: 10.1016/j.jedc.2024.105005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188924001970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2024.105005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Cosmin Ilut & Rosen Valchev, 2023. "Economic Agents as Imperfect Problem Solvers," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 313-362.
    3. Marco Cipriani & Antonio Guarino, 2014. "Estimating a Structural Model of Herd Behavior in Financial Markets," American Economic Review, American Economic Association, vol. 104(1), pages 224-251, January.
    4. Giampiero M. Gallo & Clive W.J. Granger & Yongil Jeon, 2002. "Copycats and Common Swings: The Impact of the Use of Forecasts in Information Sets," IMF Staff Papers, Palgrave Macmillan, vol. 49(1), pages 1-2.
    5. Morris H. DeGroot & Julia Mortera, 1991. "Optimal Linear Opinion Pools," Management Science, INFORMS, vol. 37(5), pages 546-558, May.
    6. Chevillon, Guillaume & Mavroeidis, Sophocles, 2017. "Learning can generate long memory," Journal of Econometrics, Elsevier, vol. 198(1), pages 1-9.
    7. Pedro Bordalo & Nicola Gennaioli & Yueran Ma & Andrei Shleifer, 2020. "Overreaction in Macroeconomic Expectations," American Economic Review, American Economic Association, vol. 110(9), pages 2748-2782, September.
    8. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    9. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    10. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
    11. James Bullard & George W. Evans & Seppo Honkapohja, 2008. "Monetary Policy, Judgment, and Near-Rational Exuberance," American Economic Review, American Economic Association, vol. 98(3), pages 1163-1177, June.
    12. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    13. Dong Li, 2012. "A note on moving-average models with feedback," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(6), pages 873-879, November.
    14. Hassan Afrouzi & Spencer Y Kwon & Augustin Landier & Yueran Ma & David Thesmar, 2023. "Overreaction in Expectations: Evidence and Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1713-1764.
    15. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    16. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    17. Jeremy Clark & Lana Friesen, 2009. "Overconfidence in Forecasts of Own Performance: An Experimental Study," Economic Journal, Royal Economic Society, vol. 119(534), pages 229-251, January.
    18. Paul Goodwin & Robert Fildes, 2022. "Forecasting with Judgment," Springer Books, in: Saïd Salhi & John Boylan (ed.), The Palgrave Handbook of Operations Research, chapter 0, pages 541-572, Springer.
    19. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    20. Francesca Monti, 2010. "Combining Judgment and Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(8), pages 1641-1662, December.
    21. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    22. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    23. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    24. Lars E O Svensson, 2005. "Monetary Policy with Judgment: Forecast Targeting," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    25. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    26. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    27. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    28. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    29. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    30. Vladimir Vovk & Glenn Shafer, 2005. "Good randomized sequential probability forecasting is always possible," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 747-763, November.
    31. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    32. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    33. Olszewski, Wojciech, 2015. "Calibration and Expert Testing," Handbook of Game Theory with Economic Applications,, Elsevier.
    34. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    35. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    36. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    37. Gelain, Paolo & Manganelli, Simone, 2020. "Monetary policy with judgment," Working Paper Series 2404, European Central Bank.
    38. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    39. Arteche, Josu, 2020. "Exact Local Whittle Estimation In Long Memory Time Series With Multiple Poles," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1064-1098, December.
    40. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    41. Garratt, Anthony & Henckel, Timo & Vahey, Shaun P., 2023. "Empirically-transformed linear opinion pools," International Journal of Forecasting, Elsevier, vol. 39(2), pages 736-753.
    42. Federica Brenna & Zymantas Budrys, 2024. "The term structure of judgement: interpreting survey disagreement," Bank of Lithuania Working Paper Series 123, Bank of Lithuania.
    43. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    44. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    45. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(1), pages 21-40.
    46. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    47. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    48. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    49. Manganelli, Simone, 2009. "Forecasting With Judgment," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 553-563.
    50. Atkinson, Anthony C. & Riani, Marco & Corbellini, Aldo, 2021. "The box-cox transformation: review and extensions," LSE Research Online Documents on Economics 103537, London School of Economics and Political Science, LSE Library.
    51. Zaffaroni, Paolo, 2004. "Contemporaneous aggregation of linear dynamic models in large economies," Journal of Econometrics, Elsevier, vol. 120(1), pages 75-102, May.
    52. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    53. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    54. Ergemen, Yunus Emre, 2023. "Parametric estimation of long memory in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1483-1499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Chini, Emilio Zanetti, 2023. "Can we estimate macroforecasters’ mis-behavior?," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    4. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    5. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    6. Chevillon, Guillaume & Hecq , Alain & Laurent, Sébastien, 2015. "Long Memory Through Marginalization of Large Systems and Hidden Cross-Section Dependence," ESSEC Working Papers WP1507, ESSEC Research Center, ESSEC Business School.
    7. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    8. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    9. Goldstein, Nathan & Zilberfarb, Ben-Zion, 2021. "Do forecasters really care about consensus?," Economic Modelling, Elsevier, vol. 100(C).
    10. Chevillon, Guillaume & Hecq, Alain & Laurent, Sébastien, 2018. "Generating univariate fractional integration within a large VAR(1)," Journal of Econometrics, Elsevier, vol. 204(1), pages 54-65.
    11. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    12. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    13. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    14. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.
    15. Shikta Sing & Supun Chandrasena & Yue Shi & Abdullah Alhussain & Claude Diebolt & Martin Enilov & Tapas Mishra, 2024. "A Learning Model with Memory in the Financial Markets," Working Papers of BETA 2024-41, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    16. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    17. de Mendonça, Helder Ferreira & Vereda, Luciano & Araujo, Mateus de Azevedo, 2022. "What type of information calls the attention of forecasters? Evidence from survey data in an emerging market," Journal of International Money and Finance, Elsevier, vol. 129(C).
    18. Christophe Andr頍 & Luis A. Gil-Alana & Rangan Gupta, 2014. "Testing for persistence in housing price-to-income and price-to-rent ratios in 16 OECD countries," Applied Economics, Taylor & Francis Journals, vol. 46(18), pages 2127-2138, June.
    19. Hagenhoff, Tim & Lustenhouwer, Joep, 2023. "The role of stickiness, extrapolation and past consensus forecasts in macroeconomic expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 149(C).
    20. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.

    More about this item

    Keywords

    Belief formation; Dynamic systems; Power spectrum; Filtering;
    All these keywords.

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:170:y:2025:i:c:s0165188924001970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.