IDEAS home Printed from https://ideas.repec.org/p/fir/econom/wp2001_01.html
   My bibliography  Save this paper

Copycats and Common Swings: the Impact of the Use of Forecasts in Information Sets

Author

Listed:

Abstract

This paper presents evidence, using data from Consensus Forecasts, that there is an 'attraction' to conform to the mean forecasts; in other words, views expressed by other forecasters in the previous period influence individuals' current forecast. The paper then discusses-and provides further evidence on-two important implications of this finding. The first is that the forecasting performance of these groups may be severely affected by the detected imitation behavior and lead to convergence to a value which is not the 'right' target. Second, since the forecasts are not independent, the common practice of using the standard deviation from the forecasts' distribution as if they were standard errors of the estimated mean is not warranted.

Suggested Citation

  • Giampiero M. Gallo & Clive W.J. Granger & Yongil Jeon, 2001. "Copycats and Common Swings: the Impact of the Use of Forecasts in Information Sets," Econometrics Working Papers Archive wp2001_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  • Handle: RePEc:fir:econom:wp2001_01
    as

    Download full text from publisher

    File URL: https://local.disia.unifi.it/ricerca/pubblicazioni/working_papers/2001/wp2001_01.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. David E. Runkle, 1998. "Revisionist history: how data revisions distort economic policy research," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 22(Fall), pages 3-12.
    2. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    3. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    4. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 293-318.
    5. Mills, Terence C. & Pepper, Gordon T., 1999. "Assessing the forecasters: an analysis of the forecasting records of the Treasury, the London Business School and the National Institute," International Journal of Forecasting, Elsevier, vol. 15(3), pages 247-257, July.
    6. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    7. Victor Zarnowitz & Louis A. Lambros, 1983. "Consensus and Uncertainty in Economic Prediction," NBER Working Papers 1171, National Bureau of Economic Research, Inc.
    8. Granger, Clive W J, 1996. "Can We Improve the Perceived Quality of Economic Forecasts?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 455-473, Sept.-Oct.
    9. John R. Graham, 1999. "Herding among Investment Newsletters: Theory and Evidence," Journal of Finance, American Finance Association, vol. 54(1), pages 237-268, February.
    10. Batchelor, Roy & Dua, Pami, 1998. "Improving macro-economic forecasts: The role of consumer confidence," International Journal of Forecasting, Elsevier, vol. 14(1), pages 71-81, March.
    11. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallo, Giampiero M. & Granger, Clive William John & Jeon, Yongil, 1999. "The impact of the use of forecasts in information sets," Research Notes 99-7, Deutsche Bank Research.
    2. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    3. Gregory, Allan W. & Yetman, James, 2004. "The evolution of consensus in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 20(3), pages 461-473.
    4. Rianne Legerstee & Philip Hans Franses, 2015. "Does Disagreement Amongst Forecasters Have Predictive Value?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 290-302, July.
    5. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    6. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    7. Alexandre Kohlhas & Tobias Broer, 2019. "Forecaster (Mis-)Behavior," 2019 Meeting Papers 1171, Society for Economic Dynamics.
    8. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    9. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    10. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    11. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    12. Lahiri, Kajal & Liu, Fushang, 2005. "ARCH models for multi-period forecast uncertainty-a reality check using a panel of density forecasts," MPRA Paper 21693, University Library of Munich, Germany.
    13. Scott Schuh, 2001. "An evaluation of recent macroeconomic forecast errors," New England Economic Review, Federal Reserve Bank of Boston, pages 35-56.
    14. Dopke, Jorg, 2001. "Macroeconomic forecasts and the nature of economic shocks in Germany," International Journal of Forecasting, Elsevier, vol. 17(2), pages 181-201.
    15. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, Reading University.
    16. Thomas M. Fullerton JR., 2001. "Specification of a Borderplex Econometric Forecasting Model," International Regional Science Review, , vol. 24(2), pages 245-260, April.
    17. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    18. Edward N. Gamber & Julie K. Smith & Matthew Weiss, 2008. "Forecast Errors Before and After the Great Moderation," Working Papers 2008-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Mar 2009.
    19. Tito Nícias Teixeira da Silva Filho, 2013. "Banks, Asset Management or Consultancies' Inflation Forecasts: is there a better forecaster out there?," Working Papers Series 310, Central Bank of Brazil, Research Department.
    20. Bizer, Kilian & Meub, Lukas & Proeger, Till & Spiwoks, Markus, 2014. "Strategic coordination in forecasting: An experimental study," Center for European, Governance and Economic Development Research Discussion Papers 195, University of Goettingen, Department of Economics.

    More about this item

    Keywords

    Multistep forecast; Consensus forecast; Preliminary data.;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fir:econom:wp2001_01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fabrizio Cipollini). General contact details of provider: http://edirc.repec.org/data/dsfirit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.