IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v54y2001i2p193-203.html
   My bibliography  Save this article

Moment bounds and central limit theorem for functions of Gaussian vectors

Author

Listed:
  • Soulier, Philippe

Abstract

In this note, bounds for moments of functions of Gaussian vectors are proved, generalizing earlier results by Taqqu (Z. Wahrscheinlichkeitstheorie verw. Gebite 40 (1977) 203) and Arcones (Ann. probab. 15 (4) (1994) 2243). These bounds are used to derive a Lindeberg-Lévy central limit theorem for triangular arrays of functions of Gaussian vectors. Statistical applications for long range dependent processes are given.

Suggested Citation

  • Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
  • Handle: RePEc:eee:stapro:v:54:y:2001:i:2:p:193-203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00061-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    2. Deo, Rohit S. & Chen, Willa W., 2000. "On the integral of the squared periodogram," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 159-176, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hal:journl:peer-00815563 is not listed on IDEAS
    2. Valdério A. Reisen & Eric Moulines & Philippe Soulier & Glaura C. Franco, 2010. "On the properties of the periodogram of a stationary long-memory process over different epochs with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 20-36, January.
    3. Blacher, René, 2007. "Central Limit Theorem by moments," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1647-1651, November.
    4. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
    5. Pakkanen, Mikko S., 2014. "Limit theorems for power variations of ambit fields driven by white noise," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1942-1973.
    6. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    7. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    8. Faÿ, Gilles, 2010. "Moment bounds for non-linear functionals of the periodogram," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 983-1009, June.
    9. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    10. Mikko S. Pakkanen, 2013. "Limit theorems for power variations of ambit fields driven by white noise," CREATES Research Papers 2013-01, Department of Economics and Business Economics, Aarhus University.
    11. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:54:y:2001:i:2:p:193-203. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.