IDEAS home Printed from
   My bibliography  Save this paper

Functional limit theorems for generalized variations of the fractional Brownian sheet


  • Mikko S. Pakkanen

    () (CREATES and Department of Economics and Business, Aarhus University)

  • Anthony Réveillac

    () (CEREMADE, Université Paris-Dauphine)


We prove functional central and non-central limit theorems for generalized variations of the anisotropic d-parameter fractional Brownian sheet (fBs) for any natural number d. Whether the central or the non-central limit theorem applies depends on the Hermite rank of the variation functional and on the smallest component of the Hurst parameter vector of the fBs. The limiting process in the former result is another fBs, independent of the original fBs, whereas the limit given by the latter result is an Hermite sheet, which is driven by the same white noise as the original fBs. As an application, we derive functional limit theorems for power variations of the fBs and discuss what is a proper way to interpolate them to ensure functional convergence.

Suggested Citation

  • Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-14

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    2. Maejima, Makoto & Tudor, Ciprian A., 2013. "On the distribution of the Rosenblatt process," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1490-1495.
    3. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Fractional Brownian sheet; central limit theorem; non-central limit theorem; Hermite sheet; power variation; Malliavin calculus;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.