IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v18y2015i2p151-175.html
   My bibliography  Save this article

Asymptotic behavior of mixed power variations and statistical estimation in mixed models

Author

Listed:
  • Marco Dozzi
  • Yuliya Mishura
  • Georgiy Shevchenko

Abstract

We obtain results on both weak and almost sure asymptotic behaviour of power variations of a linear combination of independent Wiener process and fractional Brownian motion. These results are used to construct strongly consistent parameter estimators in mixed models. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
  • Handle: RePEc:spr:sistpr:v:18:y:2015:i:2:p:151-175
    DOI: 10.1007/s11203-014-9106-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11203-014-9106-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11203-014-9106-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean‐Marc Bardet & Pierre Bertrand, 2007. "Identification of the multiscale fractional Brownian motion with biomechanical applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 1-52, January.
    2. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    3. Benassi, Albert & Cohen, Serge & Istas, Jacques, 1998. "Identifying the multifractional function of a Gaussian process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 337-345, August.
    4. Giraitis, Liudas & Robinson, Peter M. & Surgailis, Donatas, 1999. "Variance-type estimation of long memory," Stochastic Processes and their Applications, Elsevier, vol. 80(1), pages 1-24, March.
    5. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    6. van Zanten, Harry, 2007. "When is a linear combination of independent fBm's equivalent to a single fBm?," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 57-70, January.
    7. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    8. Coeurjolly, Jean-Francois, 2000. "Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 5(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Kukush & Stanislav Lohvinenko & Yuliya Mishura & Kostiantyn Ralchenko, 2022. "Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 159-187, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    2. Bibinger, Markus, 2020. "Cusum tests for changes in the Hurst exponent and volatility of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 161(C).
    3. Jean-Christophe Breton & Jean-François Coeurjolly, 2012. "Confidence intervals for the Hurst parameter of a fractional Brownian motion based on finite sample size," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 1-26, April.
    4. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    5. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
    6. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    7. Kim, Yoon Tae & Park, Hyun Suk, 2015. "Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 181-188.
    8. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    9. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    10. repec:jss:jstsof:23:i01 is not listed on IDEAS
    11. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    12. Frezza, Massimiliano & Bianchi, Sergio & Pianese, Augusto, 2021. "Fractal analysis of market (in)efficiency during the COVID-19," Finance Research Letters, Elsevier, vol. 38(C).
    13. Pierre R. Bertrand & Abdelkader Hamdouni & Samia Khadhraoui, 2012. "Modelling NASDAQ Series by Sparse Multifractional Brownian Motion," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 107-124, March.
    14. Andreas Neuenkirch & Ivan Nourdin, 2007. "Exact Rate of Convergence of Some Approximation Schemes Associated to SDEs Driven by a Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 20(4), pages 871-899, December.
    15. Sikora, Grzegorz, 2018. "Statistical test for fractional Brownian motion based on detrending moving average algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 54-62.
    16. Coeurjolly, Jean-François & Porcu, Emilio, 2017. "Properties and Hurst exponent estimation of the circularly-symmetric fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 21-27.
    17. Vu, Huong T.L. & Richard, Frédéric J.P., 2020. "Statistical tests of heterogeneity for anisotropic multifractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4667-4692.
    18. Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
    19. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    20. Frezza, Massimiliano, 2014. "Goodness of fit assessment for a fractal model of stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 41-50.
    21. Wang, Xiaohu & Xiao, Weilin & Yu, Jun, 2023. "Modeling and forecasting realized volatility with the fractional Ornstein–Uhlenbeck process," Journal of Econometrics, Elsevier, vol. 232(2), pages 389-415.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:18:y:2015:i:2:p:151-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.