IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v165y2020ics0167715220301486.html
   My bibliography  Save this article

CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index

Author

Listed:
  • Kubilius, K.

Abstract

We give a two-dimensional central limit theorem (CLT) for the second-order quadratic variation of the centered Gaussian processes on [0,T]. Though the approach we use is well known in the literature, the conditions under which the CLT holds are usually based on differentiability of the corresponding covariance function. In our case, we replace differentiability conditions by the convergence of the scaled sums of the second-order moments. To illustrate the usefulness and easiness of use of the approach, we apply the obtained CLT to proving the asymptotic normality of the estimator of the Orey index of a subfractional Brownian motion.

Suggested Citation

  • Kubilius, K., 2020. "CLT for quadratic variation of Gaussian processes and its application to the estimation of the Orey index," Statistics & Probability Letters, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301486
    DOI: 10.1016/j.spl.2020.108845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301486
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kęstutis Kubilius & Dmitrij Melichov, 2016. "Exact Confidence Intervals of the Extended Orey Index for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 785-804, September.
    2. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    3. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.
    4. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Moment bounds and central limit theorems for Gaussian subordinated arrays," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 457-473.
    5. Bojdecki, Tomasz & Gorostiza, Luis G. & Talarczyk, Anna, 2004. "Sub-fractional Brownian motion and its relation to occupation times," Statistics & Probability Letters, Elsevier, vol. 69(4), pages 405-419, October.
    6. Benassi, Albert & Cohen, Serge & Istas, Jacques & Jaffard, Stéphane, 1998. "Identification of filtered white noises," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 31-49, June.
    7. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Bibinger & Jun Yu & Chen Zhang, 2025. "Modeling and Forecasting Realized Volatility with Multivariate Fractional Brownian Motion," Working Papers 202528, University of Macau, Faculty of Business Administration.
    2. Kęstutis Kubilius & Aidas Medžiūnas, 2020. "Positive Solutions of the Fractional SDEs with Non-Lipschitz Diffusion Coefficient," Mathematics, MDPI, vol. 9(1), pages 1-14, December.
    3. Yicun Li & Yuanyang Teng, 2022. "Estimation of the Hurst Parameter in Spot Volatility," Mathematics, MDPI, vol. 10(10), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kęstutis Kubilius & Dmitrij Melichov, 2016. "Exact Confidence Intervals of the Extended Orey Index for Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 785-804, September.
    2. Skorniakov, V., 2019. "On a covariance structure of some subset of self-similar Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1903-1920.
    3. Araneda, Axel A. & Bertschinger, Nils, 2021. "The sub-fractional CEV model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    4. Cheng, Ziling, 2024. "Occupation times for age-structured branching processes," Statistics & Probability Letters, Elsevier, vol. 211(C).
    5. Swanson, Jason, 2011. "Fluctuations of the empirical quantiles of independent Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(3), pages 479-514, March.
    6. Marco Dozzi & Yuliya Mishura & Georgiy Shevchenko, 2015. "Asymptotic behavior of mixed power variations and statistical estimation in mixed models," Statistical Inference for Stochastic Processes, Springer, vol. 18(2), pages 151-175, July.
    7. Bodo Herzog, 2023. "Fractional Stochastic Search Algorithms: Modelling Complex Systems via AI," Mathematics, MDPI, vol. 11(9), pages 1-11, April.
    8. Yan, Litan & Shen, Guangjun, 2010. "On the collision local time of sub-fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 296-308, March.
    9. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2005. "A Long Range Dependence Stable Process and an Infinite Variance Branching System," RePAd Working Paper Series lrsp-TRS425, Département des sciences administratives, UQO.
    11. Tudor, Constantin, 2008. "Inner product spaces of integrands associated to subfractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2201-2209, October.
    12. Harnett, Daniel & Nualart, David, 2012. "Weak convergence of the Stratonovich integral with respect to a class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3460-3505.
    13. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
    14. T. Bojdecki & Luis G. Gorostiza & A. Talarczyk, 2004. "Functional Limit Theorems for Occupation Time Fluctuations of Branching Systems in the Cases of Large and Critical Dimensions," RePAd Working Paper Series lrsp-TRS404, Département des sciences administratives, UQO.
    15. Wang, XiaoTian & Yang, ZiJian & Cao, PiYao & Wang, ShiLin, 2021. "The closed-form option pricing formulas under the sub-fractional Poisson volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    16. Mishura, Yuliya & Yoshidae, Nakahiro, 2022. "Divergence of an integral of a process with small ball estimate," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 1-24.
    17. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.
    18. Nenghui Kuang & Bingquan Liu, 2018. "Least squares estimator for $$\alpha $$ α -sub-fractional bridges," Statistical Papers, Springer, vol. 59(3), pages 893-912, September.
    19. Bégyn, Arnaud, 2007. "Functional limit theorems for generalized quadratic variations of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1848-1869, December.
    20. Bojdecki, T. & Gorostiza, L.G. & Talarczyk, A., 2006. "Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 1-18, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:165:y:2020:i:c:s0167715220301486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.